IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v166y2020ics0167715220301772.html
   My bibliography  Save this article

On intersections of independent space–time anisotropic Gaussian fields

Author

Listed:
  • Chen, Zhenlong
  • Wang, Jun
  • Wu, Dongsheng

Abstract

Let XH={XH(s),s∈RN1} and XK={XK(t),t∈RN2} be two independent centered space–time anisotropic Gaussian random fields taking values in Rd. In this paper, we study the existence of intersections of XH and XK. Furthermore, we determine the Hausdorff dimensions of the set of intersection times and the set of intersection points of the random fields, respectively. Our results generalize the corresponding results of Chen and Xiao (2012).

Suggested Citation

  • Chen, Zhenlong & Wang, Jun & Wu, Dongsheng, 2020. "On intersections of independent space–time anisotropic Gaussian fields," Statistics & Probability Letters, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301772
    DOI: 10.1016/j.spl.2020.108874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosen, Jay, 1987. "The intersection local time of fractional Brownian motion in the plane," Journal of Multivariate Analysis, Elsevier, vol. 23(1), pages 37-46, October.
    2. Li, Yuqiang & Xiao, Yimin, 2011. "Multivariate operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1178-1200, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bardet, Jean-Marc, 2002. "Bivariate occupation measure dimension of multidimensional processes," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 323-348, June.
    2. Sönmez, Ercan, 2018. "The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 426-444.
    3. David Nualart & Salvador Ortiz-Latorre, 2007. "Intersection Local Time for Two Independent Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 759-767, December.
    4. Paul Jung & Greg Markowsky, 2015. "Hölder Continuity and Occupation-Time Formulas for fBm Self-Intersection Local Time and Its Derivative," Journal of Theoretical Probability, Springer, vol. 28(1), pages 299-312, March.
    5. Kremer, D. & Scheffler, H.-P., 2019. "Operator-stable and operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4082-4107.
    6. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    7. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    8. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    9. Li, Yuqiang, 2011. "Fluctuation limits of site-dependent branching systems in critical and large dimensions," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1604-1611, November.
    10. Jaramillo, Arturo & Nualart, David, 2017. "Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 669-700.
    11. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    12. Qian Yu, 2021. "Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1749-1774, December.
    13. Kremer, D. & Scheffler, H.-P., 2020. "About atomless random measures on δ-rings," Statistics & Probability Letters, Elsevier, vol. 164(C).
    14. Yuqiang Li & Yimin Xiao, 2012. "Occupation Time Fluctuations of Weakly Degenerate Branching Systems," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1119-1152, December.
    15. Jung, Paul & Markowsky, Greg, 2014. "On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3846-3868.
    16. Dongsheng Wu & Yimin Xiao, 2010. "Regularity of Intersection Local Times of Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 23(4), pages 972-1001, December.
    17. Chen, Chao & Yan, Litan, 2011. "Remarks on the intersection local time of fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1003-1012, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.