IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i11p3846-3868.html
   My bibliography  Save this article

On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion

Author

Listed:
  • Jung, Paul
  • Markowsky, Greg

Abstract

The derivative of self-intersection local time (DSLT) for Brownian motion was introduced by Rosen (2005) and subsequently used by others to study the L2 and L3 moduli of continuity of Brownian local time. A version of the DSLT for fractional Brownian motion (fBm) was introduced in Yan et al. (2008); however, the definition given there presents difficulties, since it is motivated by an incorrect application of the fractional Itô formula. To rectify this, we introduce a modified DSLT for fBm and prove existence using an explicit Wiener chaos expansion. We will then argue that our modification is the natural version of the DSLT by rigorously proving the corresponding Tanaka formula. This formula corrects a formal identity given in both Rosen (2005) and Yan et al. (2008). In the course of this endeavor we prove a Fubini theorem for integrals with respect to fBm. The Fubini theorem may be of independent interest, as it generalizes (to Hida distributions) similar results previously seen in the literature. As a further byproduct of our investigation, we also provide a small correction to an important technical second-moment bound for fBm which has appeared in the literature many times.

Suggested Citation

  • Jung, Paul & Markowsky, Greg, 2014. "On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3846-3868.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:11:p:3846-3868
    DOI: 10.1016/j.spa.2014.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414914001562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2014.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    2. Yan, Litan & Yang, Xiangfeng & Lu, Yunsheng, 2008. "p-variation of an integral functional driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1148-1157, July.
    3. Rosen, Jay, 1987. "The intersection local time of fractional Brownian motion in the plane," Journal of Multivariate Analysis, Elsevier, vol. 23(1), pages 37-46, October.
    4. Markowsky, Greg, 2008. "Renormalization and convergence in law for the derivative of intersection local time in," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1552-1585, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Yu, 2021. "Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1749-1774, December.
    2. Jaramillo, Arturo & Nualart, David, 2017. "Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 669-700.
    3. Yan, Litan & Yu, Xianye & Chen, Ruqing, 2017. "Derivative of intersection local time of independent symmetric stable motions," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 18-28.
    4. Jingjun Guo & Yaozhong Hu & Yanping Xiao, 2019. "Higher-Order Derivative of Intersection Local Time for Two Independent Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1190-1201, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Jung & Greg Markowsky, 2015. "Hölder Continuity and Occupation-Time Formulas for fBm Self-Intersection Local Time and Its Derivative," Journal of Theoretical Probability, Springer, vol. 28(1), pages 299-312, March.
    2. Qian Yu, 2021. "Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1749-1774, December.
    3. Bardet, Jean-Marc, 2002. "Bivariate occupation measure dimension of multidimensional processes," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 323-348, June.
    4. Alpay, Daniel & Attia, Haim & Levanony, David, 2010. "On the characteristics of a class of Gaussian processes within the white noise space setting," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1074-1104, July.
    5. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    6. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Tapiero, Charles S. & Vallois, Pierre, 2018. "Fractional Randomness and the Brownian Bridge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 835-843.
    8. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    9. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    10. Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    11. Wolfgang Schadner, 2019. "Risk-Neutral Momentum and Market Fear," Working Papers on Finance 1915, University of St. Gallen, School of Finance.
    12. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    13. Schadner, Wolfgang, 2020. "An idea of risk-neutral momentum and market fear," Finance Research Letters, Elsevier, vol. 37(C).
    14. Yan, Litan, 2004. "Maximal inequalities for the iterated fractional integrals," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 69-79, August.
    15. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    16. Bender, Christian, 2014. "Backward SDEs driven by Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2892-2916.
    17. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
    18. R. Vilela Mendes & M. J. Oliveira & A. M. Rodrigues, 2012. "The fractional volatility model: No-arbitrage, leverage and completeness," Papers 1205.2866, arXiv.org.
    19. David Nualart & Salvador Ortiz-Latorre, 2007. "Intersection Local Time for Two Independent Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 759-767, December.
    20. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:11:p:3846-3868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.