IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics016771522030170x.html
   My bibliography  Save this article

An explicit solution to the Skorokhod embedding problem for double exponential increments

Author

Listed:
  • Nguyen, Giang T.
  • Peralta, Oscar

Abstract

Strong approximations of uniform transport processes to the standard Brownian motion rely on the Skorokhod embedding of random walk with centered double exponential increments. In this note we make such an embedding explicit by means of a Poissonian scheme, which both simplifies classic constructions of strong approximations of uniform transport processes (Griego, 1971) and improves their rate of strong convergence (Gorostiza and Griego, 1980). We finalize by providing an extension regarding the embedding of a random walk with asymmetric double exponential increments.

Suggested Citation

  • Nguyen, Giang T. & Peralta, Oscar, 2020. "An explicit solution to the Skorokhod embedding problem for double exponential increments," Statistics & Probability Letters, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s016771522030170x
    DOI: 10.1016/j.spl.2020.108867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522030170X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guy Latouche & Matthieu Simon, 2018. "Markov-Modulated Brownian Motion with Temporary Change of Regime at Level Zero," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1199-1222, December.
    2. Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
    3. Albrecher, Hansjörg & Ivanovs, Jevgenijs, 2017. "Strikingly simple identities relating exit problems for Lévy processes under continuous and Poisson observations," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 643-656.
    4. Gábor Horváth & Miklós Telek, 2017. "Matrix-analytic solution of infinite, finite and level-dependent second-order fluid models," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 325-343, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    2. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    3. Hansjörg Albrecher & José Carlos Araujo-Acuna, 2022. "On The Randomized Schmitter Problem," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 515-535, June.
    4. Alvarez E., Luis H.R. & Lempa, Jukka & Saarinen, Harto & Sillanpää, Wiljami, 2024. "Solutions for Poissonian stopping problems of linear diffusions via extremal processes," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    5. Mohamed Amine Lkabous, 2019. "Poissonian occupation times of spectrally negative L\'evy processes with applications," Papers 1907.09990, arXiv.org.
    6. Eric C. K. Cheung & Jeff T. Y. Wong, 2023. "A Note on a Modified Parisian Ruin Concept," Risks, MDPI, vol. 11(3), pages 1-15, March.
    7. Lkabous, Mohamed Amine & Czarna, Irmina & Renaud, Jean-François, 2017. "Parisian ruin for a refracted Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 153-163.
    8. Boxma, Onno & Kella, Offer & Mandjes, Michel, 2023. "On fluctuation-theoretic decompositions via Lindley-type recursions," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 316-336.
    9. Hamed Amini & Zhongyuan Cao & Andreea Minca & Agn`es Sulem, 2023. "Ruin Probabilities for Risk Processes in Stochastic Networks," Papers 2302.06668, arXiv.org.
    10. Nail Akar & Omer Gursoy & Gabor Horvath & Miklos Telek, 2021. "Transient and First Passage Time Distributions of First- and Second-order Multi-regime Markov Fluid Queues via ME-fication," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1257-1283, December.
    11. Avram, Florin & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Spectrally negative Lévy processes with Parisian reflection below and classical reflection above," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 255-290.
    12. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s016771522030170x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.