IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v161y2020ics0167715220300237.html
   My bibliography  Save this article

Variational inference for multiplicative intensity models

Author

Listed:
  • Lau, John W.
  • Cripps, Edward
  • Hui, Wendy

Abstract

We extend variational inference approximation of probability density functions to multiplicative intensity functions. For Bayesian nonparametrics, this provides a computationally efficient alternative to the blocked Gibbs sampler described in Ishwaran and James (2004). Simulation results are presented to demonstrate performance.

Suggested Citation

  • Lau, John W. & Cripps, Edward & Hui, Wendy, 2020. "Variational inference for multiplicative intensity models," Statistics & Probability Letters, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300237
    DOI: 10.1016/j.spl.2020.108720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishwaran, Hemant & James, Lancelot F., 2004. "Computational Methods for Multiplicative Intensity Models Using Weighted Gamma Processes: Proportional Hazards, Marked Point Processes, and Panel Count Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 175-190, January.
    2. Braun, Michael & McAuliffe, Jon, 2010. "Variational Inference for Large-Scale Models of Discrete Choice," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 324-335.
    3. Lau, John W., 2006. "Bayesian semi-parametric modeling for mixed proportional hazard models with right censoring," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 719-728, April.
    4. Albert Lo & Chung-Sing Weng, 1989. "On a class of Bayesian nonparametric estimates: II. Hazard rate estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(2), pages 227-245, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto-Barajas, Luis E., 2014. "Bayesian semiparametric analysis of short- and long-term hazard ratios with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 477-490.
    2. Lau, John W., 2006. "Bayesian semi-parametric modeling for mixed proportional hazard models with right censoring," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 719-728, April.
    3. Arbel, Julyan & Lijoi, Antonio & Nipoti, Bernardo, 2016. "Full Bayesian inference with hazard mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 359-372.
    4. Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
    5. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
    8. Gholamreza Hajargasht & William E. Griffiths, 2018. "Estimation and testing of stochastic frontier models using variational Bayes," Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
    9. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    10. Angelo Mele, 2013. "Approximate variational inference for a model of social interactions," Working Papers 13-16, NET Institute.
    11. Zeina Al Masry & Sophie Mercier & Ghislain Verdier, 2017. "Approximate Simulation Techniques and Distribution of an Extended Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 213-235, March.
    12. Jansen, Laurens & Block, Ruud & Stepankin, Vladimir, 1995. "Analysis of superconductivity in Ba1−xKxBiO3 on the basis of indirect-exchange mediated pairing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 219(3), pages 327-350.
    13. Fard, Farzad Alavi, 2015. "Analytical pricing of vulnerable options under a generalized jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 19-28.
    14. Li, Li & Hanson, Timothy E., 2014. "A Bayesian semiparametric regression model for reliability data using effective age," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 177-188.
    15. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    16. F. S. Nathoo & A. Babul & A. Moiseev & N. Virji-Babul & M. F. Beg, 2014. "A variational Bayes spatiotemporal model for electromagnetic brain mapping," Biometrics, The International Biometric Society, vol. 70(1), pages 132-143, March.
    17. Tsukasa Ishigaki & Nobuhiko Terui & Tadahiko Sato & Greg M. Allenby, 2014. "A Large-Scale Marketing Model using Variational Bayes Inference for Sparse Transaction Data," TMARG Discussion Papers 114, Graduate School of Economics and Management, Tohoku University.
    18. Ryohei Shibue & Fumiyasu Komaki, 2020. "Deconvolution of calcium imaging data using marked point processes," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-25, March.
    19. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    20. Nicolas Depraetere & Martina Vandebroek, 2017. "A comparison of variational approximations for fast inference in mixed logit models," Computational Statistics, Springer, vol. 32(1), pages 93-125, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.