IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v154y2019ic7.html
   My bibliography  Save this article

Consistency of generalized dynamic principal components in dynamic factor models

Author

Listed:
  • Smucler, Ezequiel

Abstract

This note shows that when the data follows a dynamic factor model, the reconstruction provided by the generalized dynamic principal components introduced in Peña and Yohai (2016) converges in mean square to the common part of the factor model as both the number of time series and the number of observations diverge to infinity at any rate. A simulation study shows that the method indeed provides accurate estimations of the common part, having a mean square error smaller than competitors.

Suggested Citation

  • Smucler, Ezequiel, 2019. "Consistency of generalized dynamic principal components in dynamic factor models," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
  • Handle: RePEc:eee:stapro:v:154:y:2019:i:c:7
    DOI: 10.1016/j.spl.2019.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219301701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    3. Daniel Peña & Victor J. Yohai, 2016. "Generalized Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1121-1131, July.
    4. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    6. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    7. Daniel Peña & Ezequiel Smucler & Victor J. Yohai, 2019. "Forecasting Multiple Time Series With One-Sided Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1683-1694, October.
    8. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    2. Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.
    3. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    4. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    5. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    6. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    7. Philipp Gersing & Christoph Rust & Manfred Deistler, 2023. "Weak Factors are Everywhere," Papers 2307.10067, arXiv.org, revised Jan 2024.
    8. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    9. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    10. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    11. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    12. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    13. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    14. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    15. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    16. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    17. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    18. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    19. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
    20. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:154:y:2019:i:c:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.