IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i528p1683-1694.html
   My bibliography  Save this article

Forecasting Multiple Time Series With One-Sided Dynamic Principal Components

Author

Listed:
  • Daniel Peña
  • Ezequiel Smucler
  • Victor J. Yohai

Abstract

We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models. Supplementary materials for this article are available online.

Suggested Citation

  • Daniel Peña & Ezequiel Smucler & Victor J. Yohai, 2019. "Forecasting Multiple Time Series With One-Sided Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1683-1694, October.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1683-1694
    DOI: 10.1080/01621459.2018.1520117
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1520117
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1520117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.
    3. Andriantomanga, Zo, 2023. "The role of survey-based expectations in real-time forecasting of US inflation," MPRA Paper 119904, University Library of Munich, Germany.
    4. Smucler, Ezequiel, 2019. "Consistency of generalized dynamic principal components in dynamic factor models," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1683-1694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.