IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v150y2019icp23-28.html
   My bibliography  Save this article

A Hoeffding’s inequality for uniformly ergodic diffusion process

Author

Listed:
  • Choi, Michael C.H.
  • Li, Evelyn

Abstract

In this note, we present a version of Hoeffding’s inequality in a continuous-time setting, where the data stream comes from a uniformly ergodic diffusion process. Similar to the well-studied case of Hoeffding’s inequality for discrete-time uniformly ergodic Markov chain, the proof relies on techniques ranging from martingale theory to classical Hoeffding’s lemma as well as the notion of deviation kernel of diffusion process. We present two examples to illustrate our results. In the first example we consider large deviation probability on the occupation time of the Jacobi diffusion, a popular process used in modelling of exchange rates in mathematical finance, while in the second example we look at the exponential functional of a finite interval analogue of the Ornstein–Uhlenbeck process introduced by Kessler and Sørensen (1999).

Suggested Citation

  • Choi, Michael C.H. & Li, Evelyn, 2019. "A Hoeffding’s inequality for uniformly ergodic diffusion process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 23-28.
  • Handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:23-28
    DOI: 10.1016/j.spl.2019.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Glynn, Peter W. & Ormoneit, Dirk, 2002. "Hoeffding's inequality for uniformly ergodic Markov chains," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 143-146, January.
    3. Boucher, Thomas R., 2009. "A Hoeffding inequality for Markov chains using a generalized inverse," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1105-1107, April.
    4. Ward Whitt, 1992. "Asymptotic Formulas for Markov Processes with Applications to Simulation," Operations Research, INFORMS, vol. 40(2), pages 279-291, April.
    5. Kristian Stegenborg Larsen & Michael Sørensen, 2007. "Diffusion Models For Exchange Rates In A Target Zone," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 285-306, April.
    6. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    2. Sandrić, Nikola & Šebek, Stjepan, 2023. "Hoeffding’s inequality for non-irreducible Markov models," Statistics & Probability Letters, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    2. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    3. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    4. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    5. Ahmad, I.A. & Amezziane, M., 2013. "Probability inequalities for bounded random vectors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1136-1142.
    6. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    7. Sandrić, Nikola & Šebek, Stjepan, 2023. "Hoeffding’s inequality for non-irreducible Markov models," Statistics & Probability Letters, Elsevier, vol. 200(C).
    8. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    9. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
    10. Feng, Liming & Jiang, Pingping & Wang, Yongjin, 2020. "Constant elasticity of variance models with target zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    12. Svetlana Ekisheva & Mark Borodovsky, 2011. "Uniform Accuracy of the Maximum Likelihood Estimates for Probabilistic Models of Biological Sequences," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 105-120, March.
    13. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    14. Jean Jacod & Michael Sørensen, 2018. "A review of asymptotic theory of estimating functions," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 415-434, July.
    15. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    16. Rama Cont & Marvin Muller, 2019. "A Stochastic Pde Model For Limit Order Book Dynamics," Working Papers hal-02090449, HAL.
    17. Liao Wang & David D. Yao, 2021. "Risk Hedging for Production Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1825-1837, June.
    18. Hanson, Gordon H. & Lind, Nelson & Muendler, Marc-Andreas, 2015. "The Dynamics of Comparative Advantage," CAGE Online Working Paper Series 252, Competitive Advantage in the Global Economy (CAGE).
    19. H. S. Chang, 2004. "Technical Note: On Ordinal Comparison of Policies in Markov Reward Processes," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 207-217, July.
    20. Bouleau, Nicolas & Chorro, Christophe, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright–Fisher diffusion process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 379-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:23-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.