IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v150y2019icp23-28.html
   My bibliography  Save this article

A Hoeffding’s inequality for uniformly ergodic diffusion process

Author

Listed:
  • Choi, Michael C.H.
  • Li, Evelyn

Abstract

In this note, we present a version of Hoeffding’s inequality in a continuous-time setting, where the data stream comes from a uniformly ergodic diffusion process. Similar to the well-studied case of Hoeffding’s inequality for discrete-time uniformly ergodic Markov chain, the proof relies on techniques ranging from martingale theory to classical Hoeffding’s lemma as well as the notion of deviation kernel of diffusion process. We present two examples to illustrate our results. In the first example we consider large deviation probability on the occupation time of the Jacobi diffusion, a popular process used in modelling of exchange rates in mathematical finance, while in the second example we look at the exponential functional of a finite interval analogue of the Ornstein–Uhlenbeck process introduced by Kessler and Sørensen (1999).

Suggested Citation

  • Choi, Michael C.H. & Li, Evelyn, 2019. "A Hoeffding’s inequality for uniformly ergodic diffusion process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 23-28.
  • Handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:23-28
    DOI: 10.1016/j.spl.2019.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Ward Whitt, 1992. "Asymptotic Formulas for Markov Processes with Applications to Simulation," Operations Research, INFORMS, vol. 40(2), pages 279-291, April.
    3. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
    4. Glynn, Peter W. & Ormoneit, Dirk, 2002. "Hoeffding's inequality for uniformly ergodic Markov chains," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 143-146, January.
    5. Boucher, Thomas R., 2009. "A Hoeffding inequality for Markov chains using a generalized inverse," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1105-1107, April.
    6. Kristian Stegenborg Larsen & Michael Sørensen, 2007. "Diffusion Models For Exchange Rates In A Target Zone," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 285-306, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandrić, Nikola & Šebek, Stjepan, 2023. "Hoeffding’s inequality for non-irreducible Markov models," Statistics & Probability Letters, Elsevier, vol. 200(C).
    2. Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    2. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    3. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    4. Sandrić, Nikola & Šebek, Stjepan, 2023. "Hoeffding’s inequality for non-irreducible Markov models," Statistics & Probability Letters, Elsevier, vol. 200(C).
    5. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    6. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    7. Ahmad, I.A. & Amezziane, M., 2013. "Probability inequalities for bounded random vectors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1136-1142.
    8. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    9. Liao Wang & David D. Yao, 2021. "Risk Hedging for Production Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1825-1837, June.
    10. H. S. Chang, 2004. "Technical Note: On Ordinal Comparison of Policies in Markov Reward Processes," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 207-217, July.
    11. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    12. Yongqiang Tang, 2007. "A Hoeffding-Type Inequality for Ergodic Time Series," Journal of Theoretical Probability, Springer, vol. 20(2), pages 167-176, June.
    13. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    14. Aleksandar Mijatović & Paul Schneider, 2014. "Empirical Asset Pricing with Nonlinear Risk Premia," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 479-506.
    15. Mar'ia Fernanda del Carmen Agoitia Hurtado & Thorsten Schmidt, 2018. "Time-inhomogeneous polynomial processes," Papers 1806.03887, arXiv.org.
    16. Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    17. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
    18. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    19. Yu-Fu Chen & Michael Funke & Nicole Glanemann, 2014. "The Signalling Channel of Central Bank Interventions: Modelling the Yen/US Dollar Exchange Rate," Open Economies Review, Springer, vol. 25(2), pages 311-336, April.
    20. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:23-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.