IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v150y2019icp1-8.html
   My bibliography  Save this article

Donsker type theorem for fractional Poisson process

Author

Listed:
  • Araya, Héctor
  • Bahamonde, Natalia
  • Torres, Soledad
  • Viens, Frederi

Abstract

In this paper we study a Donsker type theorem for the fractional Poisson process (fPp). We present the random walk discretization and its associated convergence theorem in the Skorohod topology. Simulation results are also presented.

Suggested Citation

  • Araya, Héctor & Bahamonde, Natalia & Torres, Soledad & Viens, Frederi, 2019. "Donsker type theorem for fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 1-8.
  • Handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:1-8
    DOI: 10.1016/j.spl.2019.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jost, Céline, 2006. "Transformation formulas for fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1341-1357, October.
    2. Wang, Xiao-Tian & Zhang, Shi-Ying & Fan, Shen, 2007. "Nonhomogeneous fractional Poisson processes," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 236-241.
    3. Stefan Rostek, 2009. "Option Pricing in Fractional Brownian Markets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-00331-8, July.
    4. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    5. Wang, Xiao-Tian & Wen, Zhi-Xiong & Zhang, Shi-Ying, 2006. "Fractional Poisson process (II)," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 143-147.
    6. Hongshuai Dai, 2016. "Random walks and subfractional Brownian motion," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(10), pages 2834-2841, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonenko, Nikolai & Scalas, Enrico & Trinh, Mailan, 2017. "The fractional non-homogeneous Poisson process," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 147-156.
    2. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    3. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    4. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    5. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    6. Dexter O. Cahoy & Federico Polito, 2012. "Simulation and Estimation for the Fractional Yule Process," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 383-403, June.
    7. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    8. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    9. Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
    10. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    11. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    12. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    13. Cordero, Fernando & Klein, Irene & Perez-Ostafe, Lavinia, 2016. "Asymptotic proportion of arbitrage points in fractional binary markets," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 315-336.
    14. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
    15. Héctor Araya & Meryem Slaoui & Soledad Torres, 2022. "Bayesian inference for fractional Oscillating Brownian motion," Computational Statistics, Springer, vol. 37(2), pages 887-907, April.
    16. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
    17. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    18. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    19. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    20. Hufei Li & Shaojuan Ma, 2023. "The Evolution of Probability Density Function for Power System Excited by Fractional Gaussian Noise," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    21. Fernando Cordero & Lavinia Perez-Ostafe, 2014. "Critical transaction costs and 1-step asymptotic arbitrage in fractional binary markets," Papers 1407.8068, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.