IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i2p315-336.html
   My bibliography  Save this article

Asymptotic proportion of arbitrage points in fractional binary markets

Author

Listed:
  • Cordero, Fernando
  • Klein, Irene
  • Perez-Ostafe, Lavinia

Abstract

A fractional binary market is a binary model approximation for the fractional Black–Scholes model, which Sottinen constructed with the help of a Donsker-type theorem. In a binary market the non-arbitrage condition is expressed as a family of conditions on the nodes of a binary tree. We call “arbitrage points” the nodes which do not satisfy such a condition and “arbitrage paths” the paths which cross at least one arbitrage point. In this work, we provide an in-depth analysis of the asymptotic proportion of arbitrage points and arbitrage paths. Our results are obtained by studying an appropriate rescaled disturbed random walk.

Suggested Citation

  • Cordero, Fernando & Klein, Irene & Perez-Ostafe, Lavinia, 2016. "Asymptotic proportion of arbitrage points in fractional binary markets," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 315-336.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:2:p:315-336
    DOI: 10.1016/j.spa.2015.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915002203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    2. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuliya Mishura & Kostiantyn Ralchenko & Sergiy Shklyar, 2020. "General Conditions of Weak Convergence of Discrete-Time Multiplicative Scheme to Asset Price with Memory," Risks, MDPI, vol. 8(1), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    2. Norden, Lars, 2003. "Asymmetric option price distribution and bid-ask quotes: consequences for implied volatility smiles," Journal of Multinational Financial Management, Elsevier, vol. 13(4-5), pages 423-441, December.
    3. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    4. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    5. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    6. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    7. Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
    8. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    9. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    10. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    11. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    12. Giandomenico, Rossano, 2015. "Financial Methods: A Quantitative Approach," MPRA Paper 71919, University Library of Munich, Germany.
    13. Dietmar P.J. Leisen, 1997. "The Random-Time Binomial Model," Finance 9711005, University Library of Munich, Germany, revised 29 Nov 1998.
    14. Karen Alpert, 2009. "The effects of taxation on put‐call parity," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(3), pages 445-464, September.
    15. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    16. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    17. Hoque, Ariful & Le, Thi & Hasan, Morshadul & Abedin, Mohammad Zoynul, 2024. "Does market efficiency matter for Shanghai 50 ETF index options?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    18. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    19. Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
    20. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:2:p:315-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.