IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v149y2019icp116-123.html
   My bibliography  Save this article

On the quasi-ergodic distribution of absorbing Markov processes

Author

Listed:
  • He, Guoman
  • Zhang, Hanjun
  • Zhu, Yixia

Abstract

In this paper, we give a sufficient condition for the existence of a quasi-ergodic distribution for absorbing Markov processes. Using an orthogonal-polynomial approach, we prove that the previous main result is valid for the birth–death process on the nonnegative integers with 0 an absorbing boundary and ∞ an entrance boundary. We also show that the quasi-ergodic distribution is stochastically larger than the unique quasi-stationary distribution in the sense of monotone likelihood-ratio ordering for the birth–death process.

Suggested Citation

  • He, Guoman & Zhang, Hanjun & Zhu, Yixia, 2019. "On the quasi-ergodic distribution of absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 116-123.
  • Handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:116-123
    DOI: 10.1016/j.spl.2019.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Doorn, Erik A. & Pollett, Philip K., 2013. "Quasi-stationary distributions for discrete-state models," European Journal of Operational Research, Elsevier, vol. 230(1), pages 1-14.
    2. He, Guoman & Zhang, Hanjun, 2016. "On quasi-ergodic distribution for one-dimensional diffusions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 175-180.
    3. Chen, Jinwen & Deng, Xiaoxue, 2013. "Large deviations and related problems for absorbing Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2398-2418.
    4. Breyer, L. A. & Roberts, G. O., 1999. "A quasi-ergodic theorem for evanescent processes," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 177-186, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hanjun & Mo, Yongxiang, 2023. "Domain of attraction of quasi-stationary distribution for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
    2. He, Guoman & Zhang, Hanjun & Yang, Gang, 2021. "Exponential mixing property for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 179(C).
    3. Oçafrain, William, 2020. "Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3445-3476.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Guoman & Zhang, Hanjun & Yang, Gang, 2021. "Exponential mixing property for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 179(C).
    2. He, Guoman & Zhang, Hanjun, 2016. "On quasi-ergodic distribution for one-dimensional diffusions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 175-180.
    3. Oçafrain, William, 2020. "Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3445-3476.
    4. Zhang, Hanjun & Mo, Yongxiang, 2023. "Domain of attraction of quasi-stationary distribution for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
    5. Economou, A. & Gómez-Corral, A. & López-García, M., 2015. "A stochastic SIS epidemic model with heterogeneous contacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 78-97.
    6. Mikael Petersson, 2017. "Quasi-Stationary Asymptotics for Perturbed Semi-Markov Processes in Discrete Time," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1047-1074, December.
    7. Castro, Matheus M. & Lamb, Jeroen S.W. & Olicón-Méndez, Guillermo & Rasmussen, Martin, 2024. "Existence and uniqueness of quasi-stationary and quasi-ergodic measures for absorbing Markov chains: A Banach lattice approach," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    8. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2015. "The stochastic SEIR model before extinction: Computational approaches," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1026-1043.
    9. Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
    10. Claude Lefèvre & Matthieu Simon, 2022. "On the Risk of Ruin in a SIS Type Epidemic," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 939-961, June.
    11. Velleret, Aurélien, 2022. "Unique quasi-stationary distribution, with a possibly stabilizing extinction," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 98-138.
    12. Daehong Kim & Takara Tagawa, 2025. "Quasi-Ergodic Limits for Moments of Jumps Under Absorbing Stable Processes," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-19, March.
    13. Leżaj, Łukasz, 2024. "Non-symmetric stable processes: Dirichlet heat kernel, Martin kernel and Yaglom limit," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    14. Ravner, Liron, 2014. "Equilibrium arrival times to a queue with order penalties," European Journal of Operational Research, Elsevier, vol. 239(2), pages 456-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:116-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.