IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v145y2019icp81-88.html
   My bibliography  Save this article

Estimation of minimum and maximum correlation coefficients

Author

Listed:
  • Xiang, Jim X.

Abstract

To generate correlated data for given marginal distributions, it is essential that the desired Pearson correlation coefficient is between the minimum and maximum correlation coefficients. In this paper, we consider estimation of the minimum and maximum correlation coefficients of continuous random variables X andY. A strong law of large numbers and asymptotic normality are established for the estimators studied in this paper.

Suggested Citation

  • Xiang, Jim X., 2019. "Estimation of minimum and maximum correlation coefficients," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 81-88.
  • Handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:81-88
    DOI: 10.1016/j.spl.2018.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demirtas, Hakan & Hedeker, Donald, 2011. "A Practical Way for Computing Approximate Lower and Upper Correlation Bounds," The American Statistician, American Statistical Association, vol. 65(2), pages 104-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karolina Krzykowska-Piotrowska & Ewa Dudek & Paweł Wielgosz & Beata Milanowska & Jordi Mongay Batalla, 2021. "On the Correlation of Solar Activity and Troposphere on the GNSS/EGNOS Integrity. Fuzzy Logic Approach," Energies, MDPI, vol. 14(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amatya, Anup & Demirtas, Hakan, 2015. "OrdNor: An R Package for Concurrent Generation of Correlated Ordinal and Normal Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(c02).
    2. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    3. Hakan Demirtas, 2016. "A Note on the Relationship Between the Phi Coefficient and the Tetrachoric Correlation Under Nonnormal Underlying Distributions," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 143-148, May.
    4. Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
    5. Hakan Demirtas & Robab Ahmadian & Sema Atis & Fatma Ezgi Can & Ilker Ercan, 2016. "A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization," Computational Statistics, Springer, vol. 31(4), pages 1385-1401, December.
    6. Kim, Byung-Cheol, 2022. "Multi-factor dependence modelling with specified marginals and structured association in large-scale project risk assessment," European Journal of Operational Research, Elsevier, vol. 296(2), pages 679-695.
    7. Alexander D. Knudson & Tomasz J. Kozubowski & Anna K. Panorska & A. Grant Schissler, 2021. "A flexible multivariate model for high-dimensional correlated count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:81-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.