IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v8y2021i1d10.1186_s40488-021-00119-y.html
   My bibliography  Save this article

A flexible multivariate model for high-dimensional correlated count data

Author

Listed:
  • Alexander D. Knudson

    (University of Nevada)

  • Tomasz J. Kozubowski

    (University of Nevada)

  • Anna K. Panorska

    (University of Nevada)

  • A. Grant Schissler

    (University of Nevada)

Abstract

We propose a flexible multivariate stochastic model for over-dispersed count data. Our methodology is built upon mixed Poisson random vectors (Y1,…,Yd), where the {Yi} are conditionally independent Poisson random variables. The stochastic rates of the {Yi} are multivariate distributions with arbitrary non-negative margins linked by a copula function. We present basic properties of these mixed Poisson multivariate distributions and provide several examples. A particular case with geometric and negative binomial marginal distributions is studied in detail. We illustrate an application of our model by conducting a high-dimensional simulation motivated by RNA-sequencing data.

Suggested Citation

  • Alexander D. Knudson & Tomasz J. Kozubowski & Anna K. Panorska & A. Grant Schissler, 2021. "A flexible multivariate model for high-dimensional correlated count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-21, December.
  • Handle: RePEc:spr:jstada:v:8:y:2021:i:1:d:10.1186_s40488-021-00119-y
    DOI: 10.1186/s40488-021-00119-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-021-00119-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-021-00119-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    2. Qing Xiao, 2017. "Generating correlated random vector involving discrete variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1594-1605, February.
    3. Demirtas, Hakan & Hedeker, Donald, 2011. "A Practical Way for Computing Approximate Lower and Upper Correlation Bounds," The American Statistician, American Statistical Association, vol. 65(2), pages 104-109.
    4. Huifen Chen, 2001. "Initialization for NORTA: Generation of Random Vectors with Specified Marginals and Correlations," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 312-331, November.
    5. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyang Wang & James S. Dyer, 2012. "A Copulas-Based Approach to Modeling Dependence in Decision Trees," Operations Research, INFORMS, vol. 60(1), pages 225-242, February.
    2. Stanhope, Stephen, 2005. "Case studies in multivariate-to-anything transforms for partially specified random vector generation," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 68-79, August.
    3. Soumyadip Ghosh & Shane G. Henderson, 2002. "Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix," Operations Research, INFORMS, vol. 50(5), pages 820-834, October.
    4. Marcin Dec, 2021. "From point through density valuation to individual risk assessment in the discounted cash flows method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5621-5635, October.
    5. Marcin Dec, 2019. "From point through density valuation to individual risk assessment in the discounted cash flows method," GRAPE Working Papers 35, GRAPE Group for Research in Applied Economics.
    6. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    7. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    8. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    9. Chen, Huifen & Cheng, Yuyen, 2009. "Designing charts for known autocorrelations and unknown marginal distribution," European Journal of Operational Research, Elsevier, vol. 198(2), pages 520-529, October.
    10. Amatya, Anup & Demirtas, Hakan, 2015. "OrdNor: An R Package for Concurrent Generation of Correlated Ordinal and Normal Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(c02).
    11. Alexei Alexandrov & Özlem Bedre-Defolie, 2014. "The Equivalence of Bundling and Advance Sales," Marketing Science, INFORMS, vol. 33(2), pages 259-272, March.
    12. Kimberly S. Weems & Paul J. Smith, 2018. "Assessing the robustness of estimators when fitting Poisson inverse Gaussian models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 985-1004, November.
    13. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    14. Charles J. Corbett & Kumar Rajaram, 2006. "A Generalization of the Inventory Pooling Effect to Nonnormal Dependent Demand," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 351-358, August.
    15. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    16. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    17. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    18. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    19. Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
    20. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:8:y:2021:i:1:d:10.1186_s40488-021-00119-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.