IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v145y2019icp110-117.html
   My bibliography  Save this article

Lift expectations of random sets

Author

Listed:
  • Diaye, Marc-Arthur
  • Koshevoy, Gleb A.
  • Molchanov, Ilya

Abstract

It is known that the distribution of an integrable random vector ξ in Rd is uniquely determined by a (d+1)-dimensional convex body called the lift zonoid of ξ. This concept is generalised to define the lift expectation of random convex bodies. However, the unique identification property of distributions is lost; it is shown that the lift expectation uniquely identifies only one-dimensional distributions of the support function, and so different random convex bodies may share the same lift expectation. The extent of this nonuniqueness is analysed and it is related to the identification of random convex functions using only their one-dimensional marginals. Applications to construction of depth-trimmed regions and partial ordering of random convex bodies are also mentioned.

Suggested Citation

  • Diaye, Marc-Arthur & Koshevoy, Gleb A. & Molchanov, Ilya, 2019. "Lift expectations of random sets," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 110-117.
  • Handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:110-117
    DOI: 10.1016/j.spl.2018.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molchanov,Ilya & Molinari,Francesca, 2018. "Random Sets in Econometrics," Cambridge Books, Cambridge University Press, number 9781107121201, October.
    2. Puccetti, Giovanni & Scarsini, Marco, 2010. "Multivariate comonotonicity," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 291-304, January.
    3. Marco Dall’Aglio & Marco Scarsini, 2000. "Zonoids, Linear Dependence, and Size-Biased Distributions on the Simplex," ICER Working Papers - Applied Mathematics Series 27-2003, ICER - International Centre for Economic Research, revised Jul 2003.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc-Arthur Diaye & Gleb Koshevoy & Ilya Molchanov, 2019. "Lift expectations of random sets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03897964, HAL.
    2. Marc-Arthur Diaye & Gleb Koshevoy & Ilya Molchanov, 2019. "Lift expectations of random sets," Post-Print hal-03897964, HAL.
    3. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    4. Guillaume Carlier & Rose-Anne Dana & Alfred Galichon, 2012. "Pareto efficiency for the concave order and multivariate comonotonicity," SciencePo Working papers Main hal-01053549, HAL.
    5. Arthur Charpentier & Alfred Galichon & Marc Henry, 2012. "Local Utility and Multivariate Risk Aversion," CIRJE F-Series CIRJE-F-836, CIRJE, Faculty of Economics, University of Tokyo.
    6. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    7. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    8. Antonio Avilés López & José Miguel Zapata García, 2020. "Boolean Valued Representation of Random Sets and Markov Kernels with Application to Large Deviations," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    9. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    10. Maxim Ivanov, 2021. "Optimal monotone signals in Bayesian persuasion mechanisms," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(3), pages 955-1000, October.
    11. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    12. Ekeland Ivar & Schachermayer Walter, 2011. "Law invariant risk measures on L∞ (ℝd)," Statistics & Risk Modeling, De Gruyter, vol. 28(3), pages 195-225, September.
    13. repec:dau:papers:123456789/9713 is not listed on IDEAS
    14. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    15. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
    17. Rose-Anne Dana, 2011. "Comonotonicity, Efficient Risk-sharing and Equilibria in markets with short-selling for concave law-invariant utilities," Post-Print hal-00655172, HAL.
    18. Hiroaki Kaido & Yi Zhang, 2019. "Robust Likelihood Ratio Tests for Incomplete Economic Models," Papers 1910.04610, arXiv.org, revised Dec 2019.
    19. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2006. "Some positive dependence stochastic orders," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 46-78, January.
    20. Andrew Chesher & Adam Rosen, 2018. "Generalized instrumental variable models, methods, and applications," CeMMAP working papers CWP43/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    22. Martin Dumav & Maxwell B. Stinchcombe, 2021. "The multiple priors of the open-minded decision maker," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 663-692, March.
    23. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    24. Levon Barseghyan & Maura Coughlin & Francesca Molinari & Joshua C. Teitelbaum, 2021. "Heterogeneous Choice Sets and Preferences," Econometrica, Econometric Society, vol. 89(5), pages 2015-2048, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:110-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.