IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v142y2018icp92-101.html
   My bibliography  Save this article

Semi-functional partial linear quantile regression

Author

Listed:
  • Ding, Hui
  • Lu, Zhiping
  • Zhang, Jian
  • Zhang, Riquan

Abstract

Semi-functional partial linear model is a flexible model in which a scalar response is related to both functional covariate and scalar covariates. We propose a quantile estimation of this model as an alternative to the least square approach. We also extend the proposed method to kNN quantile method. Under some regular conditions, we establish the asymptotic normality of quantile estimators of regression coefficient. We also derive the rates of convergence of nonparametric function. Finite-sample performance of our estimation is compared with least square approach via a Monte Carlo simulation study. The simulation results indicate that our method is much more robust than the least square method. A real data example about spectrometric data is used to illustrate that our model and approach are promising.

Suggested Citation

  • Ding, Hui & Lu, Zhiping & Zhang, Jian & Zhang, Riquan, 2018. "Semi-functional partial linear quantile regression," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 92-101.
  • Handle: RePEc:eee:stapro:v:142:y:2018:i:c:p:92-101
    DOI: 10.1016/j.spl.2018.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
    2. Kudraszow, Nadia L. & Vieu, Philippe, 2013. "Uniform consistency of kNN regressors for functional variables," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1863-1870.
    3. Germán Aneiros-Pérez & Philippe Vieu, 2011. "Automatic estimation procedure in partial linear model with functional data," Statistical Papers, Springer, vol. 52(4), pages 751-771, November.
    4. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    5. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    2. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    3. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    4. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    5. Nengxiang Ling & Germán Aneiros & Philippe Vieu, 2020. "kNN estimation in functional partial linear modeling," Statistical Papers, Springer, vol. 61(1), pages 423-444, February.
    6. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    7. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    8. Germán Aneiros-Pérez & Philippe Vieu, 2013. "Testing linearity in semi-parametric functional data analysis," Computational Statistics, Springer, vol. 28(2), pages 413-434, April.
    9. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    10. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
    11. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    12. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.
    13. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    15. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    16. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    17. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    18. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    19. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    20. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:142:y:2018:i:c:p:92-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.