IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v141y2018icp68-73.html
   My bibliography  Save this article

Exact simulation of reciprocal Archimedean copulas

Author

Listed:
  • Mai, Jan-Frederik

Abstract

The decreasing enumeration of the points of a Poisson random measure whose mean measure is Radon on (0,∞] can be represented as a non-increasing function of the jump times of a standard Poisson process. This observation allows to generalize the essential idea from a well-known exact simulation algorithm for arbitrary extreme-value copulas to copulas of more general max-infinitely divisible distributions, with reciprocal Archimedean copulas being a particular example.

Suggested Citation

  • Mai, Jan-Frederik, 2018. "Exact simulation of reciprocal Archimedean copulas," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 68-73.
  • Handle: RePEc:eee:stapro:v:141:y:2018:i:c:p:68-73
    DOI: 10.1016/j.spl.2018.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clément Dombry & Sebastian Engelke & Marco Oesting, 2016. "Exact simulation of max-stable processes," Biometrika, Biometrika Trust, vol. 103(2), pages 303-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mai, Jan-Frederik & Wang, Ruodu, 2021. "Stochastic decomposition for ℓp-norm symmetric survival functions on the positive orthant," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    2. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    2. Hashorva, Enkelejd, 2018. "Representations of max-stable processes via exponential tilting," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2952-2978.
    3. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
    5. Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
    6. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    7. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
    8. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    9. Mourahib, Anas & Kiriliouk, Anna & Segers, Johan, 2023. "Multivariate generalized Pareto distributions along extreme directions," LIDAM Discussion Papers ISBA 2023034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Mai Jan-Frederik, 2022. "About the exact simulation of bivariate (reciprocal) Archimax copulas," Dependence Modeling, De Gruyter, vol. 10(1), pages 29-47, January.
    11. Krupskii, Pavel & Joe, Harry & Lee, David & Genton, Marc G., 2018. "Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 80-95.
    12. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    13. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    14. Erwan Koch & Christian Y. Robert, 2018. "Stochastic derivative estimation for max-stable random fields," Papers 1812.05893, arXiv.org, revised Nov 2020.
    15. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    16. Mai, Jan-Frederik & Wang, Ruodu, 2021. "Stochastic decomposition for ℓp-norm symmetric survival functions on the positive orthant," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Patrick Kuiper & Ali Hasan & Wenhao Yang & Yuting Ng & Hoda Bidkhori & Jose Blanchet & Vahid Tarokh, 2024. "Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions," Papers 2408.00131, arXiv.org.
    18. Mai, Jan-Frederik & Scherer, Matthias, 2020. "On the structure of exchangeable extreme-value copulas," Journal of Multivariate Analysis, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:141:y:2018:i:c:p:68-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.