IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v137y2018icp217-223.html
   My bibliography  Save this article

Laplace symbols and invariant distributions

Author

Listed:
  • Behme, Anita
  • Schnurr, Alexander

Abstract

We introduce a new kind of symbol in the framework of Itô processes which are bounded on one side. The connection between this symbol and the infinitesimal generator is analyzed. Based on this concept, an integral criterion for invariant distributions of the underlying process is derived. Some applications are mentioned.

Suggested Citation

  • Behme, Anita & Schnurr, Alexander, 2018. "Laplace symbols and invariant distributions," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 217-223.
  • Handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:217-223
    DOI: 10.1016/j.spl.2018.01.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218300348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.01.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keller-Ressel, Martin & Mijatović, Aleksandar, 2012. "On the limit distributions of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2329-2345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    2. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    3. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.
    4. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    5. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2013. "Stationarity and ergodicity for an affine two factor model," Papers 1302.2534, arXiv.org, revised Sep 2013.
    6. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    7. Martin Friesen & Sven Karbach, 2024. "Stationary covariance regime for affine stochastic covariance models in Hilbert spaces," Finance and Stochastics, Springer, vol. 28(4), pages 1077-1116, October.
    8. Barczy, Mátyás & Ben Alaya, Mohamed & Kebaier, Ahmed & Pap, Gyula, 2018. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1135-1164.
    9. Mijatović, Aleksandar & Vidmar, Matija & Jacka, Saul, 2015. "Markov chain approximations to scale functions of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3932-3957.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:217-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.