IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v28y2024i4d10.1007_s00780-024-00543-3.html
   My bibliography  Save this article

Stationary covariance regime for affine stochastic covariance models in Hilbert spaces

Author

Listed:
  • Martin Friesen

    (Dublin City University)

  • Sven Karbach

    (University of Amsterdam)

Abstract

This paper introduces stochastic covariance models in Hilbert spaces with stationary affine instantaneous covariance processes. We explore the applications of these models in the context of forward curve dynamics within fixed-income and commodity markets. The affine instantaneous covariance process is defined on positive self-adjoint Hilbert–Schmidt operators, and we prove the existence of a unique limit distribution for subcritical affine processes, provide convergence rates of the transition kernels in the Wasserstein distance of order p ∈ [ 1 , 2 ] $p \in [1,2]$ , and give explicit formulas for the first two moments of the limit distribution. Our results allow us to introduce affine stochastic covariance models in the stationary covariance regime and to investigate the behaviour of the implied forward volatility for large forward dates in commodity forward markets.

Suggested Citation

  • Martin Friesen & Sven Karbach, 2024. "Stationary covariance regime for affine stochastic covariance models in Hilbert spaces," Finance and Stochastics, Springer, vol. 28(4), pages 1077-1116, October.
  • Handle: RePEc:spr:finsto:v:28:y:2024:i:4:d:10.1007_s00780-024-00543-3
    DOI: 10.1007/s00780-024-00543-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-024-00543-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-024-00543-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth & Carlo Sgarra, 2024. "A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets," Finance and Stochastics, Springer, vol. 28(4), pages 1035-1076, October.
    2. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2017. "Geometric Asian option pricing in general affine stochastic volatility models with jumps," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 873-888, June.
    3. Schmidt, Thorsten & Tappe, Stefan & Yu, Weijun, 2020. "Infinite dimensional affine processes," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7131-7169.
    4. Cox, Sonja & Karbach, Sven & Khedher, Asma, 2022. "Affine pure-jump processes on positive Hilbert–Schmidt operators," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 191-229.
    5. Keller-Ressel, Martin & Mijatović, Aleksandar, 2012. "On the limit distributions of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2329-2345.
    6. Merkle, Milan J., 1989. "On weak convergence of measures on Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 252-259, May.
    7. repec:eme:mfppss:03074350510769703 is not listed on IDEAS
    8. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    9. Alfonsi, Aurélien & Kebaier, Ahmed & Rey, Clément, 2016. "Maximum likelihood estimation for Wishart processes," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3243-3282.
    10. Susanne Kruse & Ulrich Nögel, 2005. "On the pricing of forward starting options in Heston’s model on stochastic volatility," Finance and Stochastics, Springer, vol. 9(2), pages 233-250, April.
    11. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    12. Sonja Cox & Sven Karbach & Asma Khedher, 2022. "An infinite‐dimensional affine stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 878-906, July.
    13. Gourieroux, Christian & Sufana, Razvan, 2010. "Derivative Pricing With Wishart Multivariate Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 438-451.
    14. Philipp Doersek & Josef Teichmann, 2010. "A Semigroup Point Of View On Splitting Schemes For Stochastic (Partial) Differential Equations," Papers 1011.2651, arXiv.org.
    15. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    16. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    17. Antoine Jacquier & Patrick Roome, 2012. "Asymptotics of forward implied volatility," Papers 1212.0779, arXiv.org, revised Feb 2015.
    18. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    19. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    20. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fred Espen Benth & Heidar Eyjolfsson, 2024. "Robustness of Hilbert space-valued stochastic volatility models," Finance and Stochastics, Springer, vol. 28(4), pages 1117-1146, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cox, Sonja & Karbach, Sven & Khedher, Asma, 2022. "Affine pure-jump processes on positive Hilbert–Schmidt operators," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 191-229.
    2. Fred Espen Benth & Heidar Eyjolfsson, 2024. "Robustness of Hilbert space-valued stochastic volatility models," Finance and Stochastics, Springer, vol. 28(4), pages 1117-1146, October.
    3. Sonja Cox & Sven Karbach & Asma Khedher, 2022. "An infinite‐dimensional affine stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 878-906, July.
    4. Cuchiero, Christa & Di Persio, Luca & Guida, Francesco & Svaluto-Ferro, Sara, 2024. "Measure-valued affine and polynomial diffusions," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    5. Fred Espen Benth & Heidar Eyjolfsson, 2022. "Robustness of Hilbert space-valued stochastic volatility models," Papers 2211.16071, arXiv.org.
    6. Aur'elien Alfonsi & David Krief & Peter Tankov, 2018. "Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing," Papers 1806.06883, arXiv.org.
    7. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    8. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    9. Elisa Alos & Antoine Jacquier & Jorge Leon, 2017. "The implied volatility of Forward-Start options: ATM short-time level, skew and curvature," Papers 1710.11232, arXiv.org.
    10. Christa Cuchiero & Francesco Guida & Luca di Persio & Sara Svaluto-Ferro, 2021. "Measure-valued affine and polynomial diffusions," Papers 2112.15129, arXiv.org.
    11. Kurt, Kevin & Frey, Rüdiger, 2022. "Markov-modulated affine processes," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 391-422.
    12. Elisa Alòs & Antoine Jacquier & Jorge A. León, 2017. "The implied volatility of forward starting options: ATM short-time level, skew and curvature," Economics Working Papers 1568, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    14. Mayerhofer, Eberhard & Pfaffel, Oliver & Stelzer, Robert, 2011. "On strong solutions for positive definite jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2072-2086, September.
    15. Da Fonseca, José, 2016. "On moment non-explosions for Wishart-based stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 889-894.
    16. Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
    17. Sven Karbach, 2024. "Heat modulated affine stochastic volatility models for forward curve dynamics," Papers 2409.13070, arXiv.org.
    18. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org, revised Feb 2025.
    19. Fred Espen Benth & Carlo Sgarra, 2024. "A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets," Finance and Stochastics, Springer, vol. 28(4), pages 1035-1076, October.
    20. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.

    More about this item

    Keywords

    Affine processes; Invariant measure; Stationarity; Ergodicity; Stochastic covariance; Implied forward volatility; Generalised Feller semigroups;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:28:y:2024:i:4:d:10.1007_s00780-024-00543-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.