IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v127y2017icp97-103.html
   My bibliography  Save this article

On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment

Author

Listed:
  • Wang, Yuejiao
  • Liu, Zaiming
  • Li, Yingqiu
  • Liu, Quansheng

Abstract

We consider a branching process (Zn) in a stationary and ergodic random environment ξ=(ξn). Athreya and Karlin (1971) proved the basic result about the concept of subcriticality and criticality, by showing that under the quenched law Pξ, the conditional distribution of Zn given the non-extinction at time n converges in law to a proper distribution on N+={1,2,⋯} in the subcritical case, and to the null distribution in the critical case, under the condition that the environment sequence is exchangeable. In this paper we first improve this basic result by removing the exchangeability condition on the environment, and by establishing a more general result about the conditional law of Zn given the non-extinction at time n+k for each fixed k≥0. As a by-product of the proof we also remove the exchangeability condition in another result of Athreya and Karlin (1971) for the subcritical case about the decay rate of the survival probability given the environment. We then establish a convergence theorem about the ratio Pξ(Zn=j)/Pξ(Zn=1), which can be applicable in each of the subcritical, critical, and supercritical cases.

Suggested Citation

  • Wang, Yuejiao & Liu, Zaiming & Li, Yingqiu & Liu, Quansheng, 2017. "On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 97-103.
  • Handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:97-103
    DOI: 10.1016/j.spl.2017.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217300792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
    2. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
    3. Afanasyev, V.I. & Geiger, J. & Kersting, G. & Vatutin, V.A., 2005. "Functional limit theorems for strongly subcritical branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1658-1676, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doukhan, Paul & Fan, Xiequan & Gao, Zhi-Qiang, 2023. "Cramér moderate deviations for a supercritical Galton–Watson process," Statistics & Probability Letters, Elsevier, vol. 192(C).
    2. Gao, Zhi-Qiang, 2021. "Exact convergence rate in the central limit theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 178(C).
    3. Li, Zenghu & Xu, Wei, 2018. "Asymptotic results for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 108-131.
    4. Struleva, M.A. & Prokopenko, E.I., 2022. "Integro-local limit theorems for supercritical branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 181(C).
    5. Xu, Wei, 2023. "Asymptotics for exponential functionals of random walks," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 1-42.
    6. Gao, Zhenlong & Zhang, Yanhua, 2015. "Large and moderate deviations for a class of renewal random indexed branching process," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 1-5.
    7. V. I. Afanasyev & C. Böinghoff & G. Kersting & V. A. Vatutin, 2012. "Limit Theorems for Weakly Subcritical Branching Processes in Random Environment," Journal of Theoretical Probability, Springer, vol. 25(3), pages 703-732, September.
    8. Böinghoff, Christian & Kersting, Götz, 2010. "Upper large deviations of branching processes in a random environment--Offspring distributions with geometrically bounded tails," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2064-2077, September.
    9. Ye, Yinna, 2024. "From law of the iterated logarithm to Zolotarev distance for supercritical branching processes in random environment," Statistics & Probability Letters, Elsevier, vol. 214(C).
    10. Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
    11. Böinghoff, Christian, 2014. "Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3553-3577.
    12. Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
    13. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
    14. Alsmeyer, Gerold & Gröttrup, Sören, 2016. "Branching within branching: A model for host–parasite co-evolution," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1839-1883.
    15. Peter Eichelsbacher & Matthias Löwe, 2019. "Lindeberg’s Method for Moderate Deviations and Random Summation," Journal of Theoretical Probability, Springer, vol. 32(2), pages 872-897, June.
    16. Gao, Zhenlong & Wang, Weigang, 2015. "Large deviations for a Poisson random indexed branching process," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 143-148.
    17. Bansaye, Vincent, 2009. "Surviving particles for subcritical branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2436-2464, August.
    18. Xiao, Hui & Grama, Ion & Liu, Quansheng, 2021. "Berry–Esseen bounds and moderate deviations for random walks on GLd(R)," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 293-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:97-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.