IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v115y2005i10p1658-1676.html
   My bibliography  Save this article

Functional limit theorems for strongly subcritical branching processes in random environment

Author

Listed:
  • Afanasyev, V.I.
  • Geiger, J.
  • Kersting, G.
  • Vatutin, V.A.

Abstract

For a strongly subcritical branching process (Zn)n[greater-or-equal, slanted]0 in random environment the non-extinction probability at generation n decays at the same exponential rate as the expected generation size and given non-extinction at n the conditional distribution of Zn has a weak limit. Here we prove conditional functional limit theorems for the generation size process (Zk)0[less-than-or-equals, slant]k[less-than-or-equals, slant]n as well as for the random environment. We show that given the population survives up to generation n the environmental sequence still evolves in an i.i.d. fashion and that the conditioned generation size process converges in distribution to a positive recurrent Markov chain.

Suggested Citation

  • Afanasyev, V.I. & Geiger, J. & Kersting, G. & Vatutin, V.A., 2005. "Functional limit theorems for strongly subcritical branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1658-1676, October.
  • Handle: RePEc:eee:spapps:v:115:y:2005:i:10:p:1658-1676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00061-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. I. Afanasyev & C. Böinghoff & G. Kersting & V. A. Vatutin, 2012. "Limit Theorems for Weakly Subcritical Branching Processes in Random Environment," Journal of Theoretical Probability, Springer, vol. 25(3), pages 703-732, September.
    2. Böinghoff, Christian, 2014. "Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3553-3577.
    3. Li, Zenghu & Xu, Wei, 2018. "Asymptotic results for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 108-131.
    4. Alsmeyer, Gerold & Gröttrup, Sören, 2016. "Branching within branching: A model for host–parasite co-evolution," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1839-1883.
    5. Xu, Wei, 2023. "Asymptotics for exponential functionals of random walks," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 1-42.
    6. Wang, Yuejiao & Liu, Zaiming & Li, Yingqiu & Liu, Quansheng, 2017. "On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 97-103.
    7. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
    8. Böinghoff, Christian & Kersting, Götz, 2010. "Upper large deviations of branching processes in a random environment--Offspring distributions with geometrically bounded tails," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2064-2077, September.
    9. Bansaye, Vincent, 2009. "Surviving particles for subcritical branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2436-2464, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:115:y:2005:i:10:p:1658-1676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.