IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v120y2017icp45-51.html
   My bibliography  Save this article

Posterior convergence rate of a class of Dirichlet process mixture model for compositional data

Author

Listed:
  • Barrientos, Andrés F.
  • Jara, Alejandro
  • Wehrhahn, Claudia

Abstract

We propose a Dirichlet process mixture of mixtures of Dirichlet models for density estimation. By assuming random sampling from a density belonging to a Hölder class, we show that the posterior distribution of the model is rate-optimal.

Suggested Citation

  • Barrientos, Andrés F. & Jara, Alejandro & Wehrhahn, Claudia, 2017. "Posterior convergence rate of a class of Dirichlet process mixture model for compositional data," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 45-51.
  • Handle: RePEc:eee:stapro:v:120:y:2017:i:c:p:45-51
    DOI: 10.1016/j.spl.2016.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215300730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    2. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    3. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    4. Karabatsos, George & Walker, Stephen G., 2007. "Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 907-913, May.
    5. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    6. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    8. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    9. Aryal, Gaurab & Grundl, Serafin & Kim, Dong-Hyuk & Zhu, Yu, 2018. "Empirical relevance of ambiguity in first-price auctions," Journal of Econometrics, Elsevier, vol. 204(2), pages 189-206.
    10. Carnicero, José Antonio, 2010. "Circular Bernstein polynomial distributions," DES - Working Papers. Statistics and Econometrics. WS ws102511, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    12. Lorenzo Trippa & Paolo Bulla & Sonia Petrone, 2011. "Extended Bernstein prior via reinforced urn processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 481-496, June.
    13. Kim, Dong-Hyuk, 2013. "Optimal choice of a reserve price under uncertainty," International Journal of Industrial Organization, Elsevier, vol. 31(5), pages 587-602.
    14. Ramsés H. Mena & Stephen G. Walker, 2005. "Stationary Autoregressive Models via a Bayesian Nonparametric Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 789-805, November.
    15. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    16. Gard, Charlotte C. & Brown, Elizabeth R., 2015. "A Bayesian hierarchical model for estimating and partitioning Bernstein polynomial density functions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 73-83.
    17. Bouezmarni, Taoufik & El Ghouch, Anouar, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
    18. Burda, Martin & Prokhorov, Artem, 2014. "Copula based factorization in Bayesian multivariate infinite mixture models," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
    19. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.
    20. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:120:y:2017:i:c:p:45-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.