IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v118y2016icp80-86.html
   My bibliography  Save this article

A strong law of large numbers for nonnegative random variables and applications

Author

Listed:
  • Chen, Pingyan
  • Sung, Soo Hak

Abstract

For a sequence of nonnegative random variables {Xn,n≥1} with finite means and partial sums Sn=∑i=1nXi,n≥1, and a sequence of positive numbers {bn,n≥1} with bn↑∞, sufficient conditions are given under which (Sn−ESn)/bn→0 almost surely. Our result generalizes the strong law of large numbers obtained by Korchevsky (2015). Some applications for dependent random variables are also provided.

Suggested Citation

  • Chen, Pingyan & Sung, Soo Hak, 2016. "A strong law of large numbers for nonnegative random variables and applications," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 80-86.
  • Handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:80-86
    DOI: 10.1016/j.spl.2016.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etemadi, N., 1983. "Stability of sums of weighted nonnegative random variables," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 361-365, June.
    2. Korchevsky, Valery, 2015. "A generalization of the Petrov strong law of large numbers," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 102-108.
    3. H. Jabbari, 2013. "On almost sure convergence for weighted sums of pairwise negatively quadrant dependent random variables," Statistical Papers, Springer, vol. 54(3), pages 765-772, August.
    4. Etemadi, Nasrollah, 1983. "On the laws of large numbers for nonnegative random variables," Journal of Multivariate Analysis, Elsevier, vol. 13(1), pages 187-193, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lita da Silva, João, 2018. "Strong laws of large numbers for pairwise quadrant dependent random variables," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 349-358.
    2. Quang, Nguyen Van & Son, Do The & Son, Le Hong, 2017. "The strong laws of large numbers for positive measurable operators and applications," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 110-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soo Hak Sung, 2014. "Marcinkiewicz–Zygmund Type Strong Law of Large Numbers for Pairwise i.i.d. Random Variables," Journal of Theoretical Probability, Springer, vol. 27(1), pages 96-106, March.
    2. Quang, Nguyen Van & Son, Do The & Son, Le Hong, 2017. "The strong laws of large numbers for positive measurable operators and applications," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 110-120.
    3. Siemroth, Christoph, 2014. "Why prediction markets work : The role of information acquisition and endogenous weighting," Working Papers 14-02, University of Mannheim, Department of Economics.
    4. Wallsten, Thomas S. & Diederich, Adele, 2001. "Understanding pooled subjective probability estimates," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 1-18, January.
    5. H. Jabbari, 2013. "On almost sure convergence for weighted sums of pairwise negatively quadrant dependent random variables," Statistical Papers, Springer, vol. 54(3), pages 765-772, August.
    6. Matula, Przemyslaw, 2005. "On almost sure limit theorems for positively dependent random variables," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 59-66, August.
    7. Hashorva, Enkelejd, 2001. "Asymptotic results for FGM random sequences," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 417-425, October.
    8. Alexander J. Bogensperger & Yann Fabel & Joachim Ferstl, 2022. "Accelerating Energy-Economic Simulation Models via Machine Learning-Based Emulation and Time Series Aggregation," Energies, MDPI, vol. 15(3), pages 1-42, February.
    9. Stepanov, A., 2011. "Limit theorems for runs based on 'small spacings'," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 54-61, January.
    10. Tappe, Stefan, 2021. "A note on the von Weizsäcker theorem," Statistics & Probability Letters, Elsevier, vol. 168(C).
    11. Lita da Silva, João, 2018. "Strong laws of large numbers for pairwise quadrant dependent random variables," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 349-358.
    12. Etemadi, N., 2007. "Stability of weighted averages of 2-exchangeable random variables," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 389-395, February.
    13. Narayanaswamy Balakrishnan & Alexei Stepanov, 2013. "Runs Based on Records: Their Distributional Properties and an Application to Testing for Dispersive Ordering," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 583-594, September.
    14. Berti, Patrizia & Rigo, Pietro, 2002. "A uniform limit theorem for predictive distributions," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 113-120, January.
    15. Hu, Cheng, 2016. "A strong law of large numbers for sub-linear expectation under a general moment condition," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 248-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:80-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.