IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v105y2015icp120-129.html
   My bibliography  Save this article

Feynman–Kac for functional jump diffusions with an application to Credit Value Adjustment

Author

Listed:
  • Kromer, E.
  • Overbeck, L.
  • Röder, J.A.L.

Abstract

We provide a proof for the functional Feynman–Kac theorem for jump diffusions with path-dependent coefficients and apply our results to the problem of Credit Value Adjustment (CVA) in a bilateral counterparty risk framework. We derive the corresponding functional CVA-PIDE and extend existing results on CVA to a setting which enables the pricing of path-dependent derivatives.

Suggested Citation

  • Kromer, E. & Overbeck, L. & Röder, J.A.L., 2015. "Feynman–Kac for functional jump diffusions with an application to Credit Value Adjustment," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 120-129.
  • Handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:120-129
    DOI: 10.1016/j.spl.2015.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215001935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levental, Shlomo & Schroder, Mark & Sinha, Sumit, 2013. "A simple proof of functional Itô’s lemma for semimartingales with an application," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2019-2026.
    2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    2. Frank Bosserhoff & Mitja Stadje, 2019. "Mean-variance hedging of unit linked life insurance contracts in a jump-diffusion model," Papers 1908.05534, arXiv.org.
    3. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    2. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    3. Lian, Yu-Min & Chen, Jun-Home & Liao, Szu-Lang, 2021. "Cojump risks and their impacts on option pricing," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 399-410.
    4. Varma, Jayanth R., 1999. "Rupee-Dollar Option Pricing and Risk Measurement: Jump Processes, Changing Volatility and Kurtosis Shifts," IIMA Working Papers WP1999-04-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Wenli Zhu & Xinfeng Ruan, 2019. "Pricing Swaps on Discrete Realized Higher Moments Under the Lévy Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 507-532, February.
    6. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    7. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    8. Lei Fan & Justin Sirignano, 2024. "Machine Learning Methods for Pricing Financial Derivatives," Papers 2406.00459, arXiv.org.
    9. Nikita Ratanov, 2008. "Option Pricing Model Based on a Markov-modulated Diffusion with Jumps," Papers 0812.0761, arXiv.org.
    10. Albert S. (Pete) & Karamfil Todorov, 2023. "The cumulant risk premium," BIS Working Papers 1128, Bank for International Settlements.
    11. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).
    12. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    13. Adam W. Kolkiewicz & Fangyuan Sally Lin, 2017. "Pricing Surrender Risk in Ratchet Equity-Index Annuities under Regime-Switching Lévy Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 433-457, July.
    14. Schoenmaker, Dirk & Reinders, Henk Jan & Van Dijk, Mathijs, 2020. "Is COVID-19 a threat to financial stability in Europe?," CEPR Discussion Papers 14922, C.E.P.R. Discussion Papers.
    15. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    16. Kasper Larsen & Tanawit Sae Sue, 2015. "Radner equilibrium in incomplete Levy models," Papers 1507.02974, arXiv.org, revised Jul 2015.
    17. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    18. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    19. Fenglong Guo, 2025. "Pricing Vulnerable Options With Variance Gamma Systematic and Idiosyncratic Factors by Laplace Transform Inversion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 47-76, January.
    20. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:120-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.