IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v94y2001i1p105-134.html
   My bibliography  Save this article

A universal result in almost sure central limit theory

Author

Listed:
  • Berkes, István
  • Csáki, Endre

Abstract

The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561-574; Schatte, Math. Nachr. 137 (1988) 249-256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related 'logarithmic' limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for 'more sensitive' limit theorems. Several examples of such a.s. limit theorems are discussed.

Suggested Citation

  • Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.
  • Handle: RePEc:eee:spapps:v:94:y:2001:i:1:p:105-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00078-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fahrner, I. & Stadtmüller, U., 1998. "On almost sure max-limit theorems," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 229-236, March.
    2. Horvath, Lajos & Khoshnevisan, Davar, 1995. "Weight functions and pathwise local central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 105-123, September.
    3. Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
    4. Berkes, István & Csáki, Endre & Csörgo, Sándor, 1999. "Almost sure limit theorems for the St. Petersburg game," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 23-30, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    2. Zhicheng Chen & Hongyun Zhang & Xinsheng Liu, 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
    3. Fahrner, Ingo, 2000. "An extension of the almost sure max-limit theorem," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 93-103, August.
    4. Zoltán Megyesi, 2002. "Domains of Geometric Partial Attraction of Max-Semistable Laws: Structure, Merge and Almost Sure Limit Theorems," Journal of Theoretical Probability, Springer, vol. 15(4), pages 973-1005, October.
    5. Berkes, István & Horváth, Lajos, 2001. "The logarithmic average of sample extremes is asymptotically normal," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 77-98, January.
    6. Berkes, István & Csáki, Endre & Csörgo, Sándor, 1999. "Almost sure limit theorems for the St. Petersburg game," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 23-30, October.
    7. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    8. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    9. Giuliano, Rita & Macci, Claudio & Pacchiarotti, Barbara, 2019. "Large deviations for weighted means of random vectors defined in terms of suitable Lévy processes," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 13-22.
    10. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    11. István Fazekas & Alexey Chuprunov, 2007. "An Almost Sure Functional Limit Theorem for the Domain of Geometric Partial Attraction of Semistable Laws," Journal of Theoretical Probability, Springer, vol. 20(2), pages 339-353, June.
    12. Csáki, Endre & Gonchigdanzan, Khurelbaatar, 2002. "Almost sure limit theorems for the maximum of stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 195-203, June.
    13. Blacher, René, 2007. "Central Limit Theorem by moments," Statistics & Probability Letters, Elsevier, vol. 77(17), pages 1647-1651, November.
    14. Berkes, István & Horváth, Lajos & Khoshnevisan, Davar, 1998. "Logarithmic averages of stable random variables are asymptotically normal," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 35-51, September.
    15. Giuliano, Rita & Macci, Claudio, 2018. "Large deviations for some logarithmic means in the case of random variables with thin tails," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 47-56.
    16. Fahrner, I. & Stadtmüller, U., 1998. "On almost sure max-limit theorems," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 229-236, March.
    17. Tan, Zhongquan, 2013. "An almost sure limit theorem for the maxima of smooth stationary Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2135-2141.
    18. Nakata, Toshio, 2017. "A note on the asymptotics of the maxima for the St. Petersburg game," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 284-287.
    19. Bercu, Bernard & Nourdin, Ivan & Taqqu, Murad S., 2010. "Almost sure central limit theorems on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1607-1628, August.
    20. Panloup, Fabien, 2009. "A connection between extreme value theory and long time approximation of SDEs," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3583-3607, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:94:y:2001:i:1:p:105-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.