IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v77y1998i1p35-51.html
   My bibliography  Save this article

Logarithmic averages of stable random variables are asymptotically normal

Author

Listed:
  • Berkes, István
  • Horváth, Lajos
  • Khoshnevisan, Davar

Abstract

We show that most random walks in the domain of attraction of a symmetric stable law have a non-trivial almost sure central limit theorem with the normal law as the limit.

Suggested Citation

  • Berkes, István & Horváth, Lajos & Khoshnevisan, Davar, 1998. "Logarithmic averages of stable random variables are asymptotically normal," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 35-51, September.
  • Handle: RePEc:eee:spapps:v:77:y:1998:i:1:p:35-51
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00034-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horvath, Lajos & Khoshnevisan, Davar, 1995. "Weight functions and pathwise local central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 105-123, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berkes, István & Horváth, Lajos, 2001. "The logarithmic average of sample extremes is asymptotically normal," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 77-98, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    2. Fahrner, I. & Stadtmüller, U., 1998. "On almost sure max-limit theorems," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 229-236, March.
    3. Csáki, Endre & Földes, Antónia, 1997. "On the logarithmic average of iterated processes," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 347-358, May.
    4. Berkes, István & Horváth, Lajos, 1996. "Between local and global logarithmic averages," Statistics & Probability Letters, Elsevier, vol. 30(4), pages 369-378, November.
    5. Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:77:y:1998:i:1:p:35-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.