IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v93y2001i2p301-316.html
   My bibliography  Save this article

On the surviving probability of an annihilating branching process and application to a nonlinear voter model

Author

Listed:
  • Alili, Smail
  • Ignatiouk-Robert, Irina

Abstract

We study a discrete time interacting particle system which can be considered as an annihilating branching process on where at each time every particle either performs a jump as a nearest neighbor random walk, or splits (with probability [var epsilon]) into two particles which will occupy the nearest neighbor sites. Furthermore, if two particles come to the same site, then they are removed from the system. We show that if the branching probability [var epsilon]>0 is small enough, and the number of particles at initial time is finite, then the surviving probability, i.e. the probability p(t) that there is at least one particle at time t decays to zero exponentially fast. This result is applied to a nonlinear discrete time voter model (in a random and nonrandom environment) obtained as a small perturbation with parameter [var epsilon] of the classical voter model. For this class of models, we show that if [var epsilon]>0 is small enough, then the process converges to a unique invariant probability measure independently on the initial distribution. It is known that the classical one-dimensional voter model (in a random environment as well as without environment) is not ergodic, that is there exist at least two extremal invariant probability measures. Our results prove therefore the phase transition in [var epsilon]=0.

Suggested Citation

  • Alili, Smail & Ignatiouk-Robert, Irina, 2001. "On the surviving probability of an annihilating branching process and application to a nonlinear voter model," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 301-316, June.
  • Handle: RePEc:eee:spapps:v:93:y:2001:i:2:p:301-316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00101-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Granovsky, Boris L. & Madras, Neal, 1995. "The noisy voter model," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 23-43, January.
    2. Bramson, Maury & Wan-ding, Ding & Durrett, Rick, 1991. "Annihilating branching processes," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kononovicius, Aleksejus, 2021. "Supportive interactions in the noisy voter model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Ted Theodosopoulos, 2004. "Uncertainty relations in models of market microstructure," Papers math/0409076, arXiv.org, revised Feb 2005.
    3. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    4. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
    5. Aidan Sudbury, 2000. "Dual Families of Interacting Particle Systems on Graphs," Journal of Theoretical Probability, Springer, vol. 13(3), pages 695-716, July.
    6. Theodosopoulos, Ted, 2005. "Uncertainty relations in models of market microstructure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 209-216.
    7. Jan Niklas Latz & Jan M. Swart, 2023. "Commutative Monoid Duality," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1088-1115, June.
    8. Theodosopoulos, Ted & Yuen, Ming, 2007. "Properties of the wealth process in a market microstructure model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 443-452.
    9. Lee, Woosub & Yang, Seong-Gyu & Kim, Beom Jun, 2022. "The effect of media on opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    10. Sudbury, Aidan, 1997. "The convergence of the biased annihilating branching process and the double-flipping process in d," Stochastic Processes and their Applications, Elsevier, vol. 68(2), pages 255-264, June.
    11. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    12. Kyrylo Shmatov & Mikhail Smirnov, 2005. "On Some Processes and Distributions in a Collective Model of Investors' Behavior," Papers nlin/0506015, arXiv.org.
    13. Volker Hösel & Johannes Müller & Aurelien Tellier, 2019. "Universality of neutral models: decision process in politics," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-8, December.
    14. Chen, Yu-Ting & Cox, J. Theodore, 2018. "Weak atomic convergence of finite voter models toward Fleming–Viot processes," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2463-2488.
    15. Khalil, Nagi, 2021. "Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Granovsky, Boris L. & Zeifman, Alexander I., 1997. "The decay function of nonhomogeneous birth-death processes, with application to mean-field models," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 105-120, December.
    17. Jung, Paul, 2005. "The noisy voter-exclusion process," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 1979-2005, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:93:y:2001:i:2:p:301-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.