IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v68y1997i2p255-264.html
   My bibliography  Save this article

The convergence of the biased annihilating branching process and the double-flipping process in d

Author

Listed:
  • Sudbury, Aidan

Abstract

It is shown that, if the initial measure is translation-invariant, then finite-range stochastic Ising models allowing zero flip-rates converge. In particular, the biased annihilating process converges to a mixture of a product measure and [delta]ø and the double-flipping process converges to a product measure. The method of relative entropy is employed.

Suggested Citation

  • Sudbury, Aidan, 1997. "The convergence of the biased annihilating branching process and the double-flipping process in d," Stochastic Processes and their Applications, Elsevier, vol. 68(2), pages 255-264, June.
  • Handle: RePEc:eee:spapps:v:68:y:1997:i:2:p:255-264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00027-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bramson, Maury & Wan-ding, Ding & Durrett, Rick, 1991. "Annihilating branching processes," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aidan Sudbury, 2000. "Dual Families of Interacting Particle Systems on Graphs," Journal of Theoretical Probability, Springer, vol. 13(3), pages 695-716, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aidan Sudbury, 2000. "Dual Families of Interacting Particle Systems on Graphs," Journal of Theoretical Probability, Springer, vol. 13(3), pages 695-716, July.
    2. Jan Niklas Latz & Jan M. Swart, 2023. "Commutative Monoid Duality," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1088-1115, June.
    3. Alili, Smail & Ignatiouk-Robert, Irina, 2001. "On the surviving probability of an annihilating branching process and application to a nonlinear voter model," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 301-316, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:68:y:1997:i:2:p:255-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.