IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v77y1998i2p207-232.html
   My bibliography  Save this article

Large deviations for the Fleming-Viot process with neutral mutation and selection

Author

Listed:
  • Dawson, Donald A.
  • Feng, Shui

Abstract

Large deviation principles are established for the Fleming-Viot processes with neutral mutation and selection, and the corresponding equilibrium measures as the sampling rate goes to 0. All results are first proved for the finite allele model, and then generalized, through the projective limit technique, to the infinite allele model. Explicit expressions are obtained for the rate functions.

Suggested Citation

  • Dawson, Donald A. & Feng, Shui, 1998. "Large deviations for the Fleming-Viot process with neutral mutation and selection," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 207-232, September.
  • Handle: RePEc:eee:spapps:v:77:y:1998:i:2:p:207-232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00035-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ethier, S. N. & Kurtz, Thomas G., 1994. "Convergence to Fleming-Viot processes in the weak atomic topology," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Telles Timóteo & Fragoso, Marcelo D., 2008. "Sample paths of jump-type Fleming-Viot processes with bounded mutation operators," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1784-1791, September.
    2. Gao, Fuqing & Gao, Yunshi & Xiong, Jie, 2024. "Fluctuations and moderate deviations for a catalytic Fleming–Viot branching system in nonequilibrium," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    3. Fatheddin, Parisa & Xiong, Jie, 2015. "Large deviation principle for some measure-valued processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 970-993.
    4. A. Dawson, Donald & Feng, Shui, 2001. "Large deviations for the Fleming-Viot process with neutral mutation and selection, II," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 131-162, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinrücken, Matthias & Wang, Y.X. Rachel & Song, Yun S., 2013. "An explicit transition density expansion for a multi-allelic Wright–Fisher diffusion with general diploid selection," Theoretical Population Biology, Elsevier, vol. 83(C), pages 1-14.
    2. A. Dawson, Donald & Feng, Shui, 2001. "Large deviations for the Fleming-Viot process with neutral mutation and selection, II," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 131-162, March.
    3. Feng, Shui, 2009. "Poisson-Dirichlet distribution with small mutation rate," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2082-2094, June.
    4. Champagnat, Nicolas & Hass, Vincent, 2023. "Existence, uniqueness and ergodicity for the centered Fleming–Viot process," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    5. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    6. Stephen G. Walker & Matteo Ruggiero, 2007. "Construction and Stationary Distribution of the Fleming-Viot Process with Viability Selection," ICER Working Papers - Applied Mathematics Series 14-2007, ICER - International Centre for Economic Research.
    7. Stephen G. Walker & Matteo Ruggiero, 2007. "Bayesian Nonparametric Construction of the Fleming-Viot Process with Fertility Selection," ICER Working Papers - Applied Mathematics Series 13-2007, ICER - International Centre for Economic Research.
    8. Stefano Favaro & Matteo Ruggiero & Dario Spanò & Stephen G. Walker, 2007. "The Neutral Population Model and Bayesian Nonparametrics," ICER Working Papers - Applied Mathematics Series 18-2007, ICER - International Centre for Economic Research.
    9. Chen, Yu-Ting & Cox, J. Theodore, 2018. "Weak atomic convergence of finite voter models toward Fleming–Viot processes," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2463-2488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:77:y:1998:i:2:p:207-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.