IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v171y2024ics0304414924000267.html
   My bibliography  Save this article

Fluctuations and moderate deviations for a catalytic Fleming–Viot branching system in nonequilibrium

Author

Listed:
  • Gao, Fuqing
  • Gao, Yunshi
  • Xiong, Jie

Abstract

We consider fluctuations and moderate deviations of the empirical fields for a catalytic Fleming–Viot branching system in nonequilibrium. We proved that for some independent initial distribution, the fluctuation process of the empirical fields is governed by an Ornstein–Uhlenbeck process whose drift term is a linear operator associated with a catalyst. Furthermore, we establish the large deviation principle corresponding to the fluctuation. We develop a technique to estimate the exponential moments for the Sobolev norms of the empirical fluctuation fields via the spectrum of the Laplace operator and the exponential inequality of martingales. The estimates of the exponential moments play a crucial role in this paper.

Suggested Citation

  • Gao, Fuqing & Gao, Yunshi & Xiong, Jie, 2024. "Fluctuations and moderate deviations for a catalytic Fleming–Viot branching system in nonequilibrium," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:spapps:v:171:y:2024:i:c:s0304414924000267
    DOI: 10.1016/j.spa.2024.104320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Dawson, Donald & Feng, Shui, 2001. "Large deviations for the Fleming-Viot process with neutral mutation and selection, II," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 131-162, March.
    2. Dawson, Donald A. & Feng, Shui, 1998. "Large deviations for the Fleming-Viot process with neutral mutation and selection," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 207-232, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatheddin, Parisa & Xiong, Jie, 2015. "Large deviation principle for some measure-valued processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 970-993.
    2. da Silva, Telles Timóteo & Fragoso, Marcelo D., 2008. "Sample paths of jump-type Fleming-Viot processes with bounded mutation operators," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1784-1791, September.
    3. Schraiber, Joshua G., 2014. "A path integral formulation of the Wright–Fisher process with genic selection," Theoretical Population Biology, Elsevier, vol. 92(C), pages 30-35.
    4. F. Gamboa & A. Rouault, 2010. "Canonical Moments and Random Spectral Measures," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1015-1038, December.
    5. A. Dawson, Donald & Feng, Shui, 2001. "Large deviations for the Fleming-Viot process with neutral mutation and selection, II," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 131-162, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:171:y:2024:i:c:s0304414924000267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.