IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v168y2024ics0304414923002417.html
   My bibliography  Save this article

Orthogonal intertwiners for infinite particle systems in the continuum

Author

Listed:
  • Wagner, Stefan

Abstract

This article focuses on a system of sticky Brownian motions, also known as Howitt–Warren martingale problem, and correlated Brownian motions and shows that infinite-dimensional orthogonal polynomials intertwine the dynamics of infinitely many particles and their n-particle evolution. The proof is based on two assumptions about the model: information about the reversible measures for the n-particle dynamics and consistency. Additionally, explicit formulas for the polynomials are used, including a new explicit formula for infinite-dimensional Meixner polynomials, the orthogonal polynomials with respect to the Pascal process. As an application of the intertwining relations, new reversible measures for the infinite-particle dynamics are obtained.

Suggested Citation

  • Wagner, Stefan, 2024. "Orthogonal intertwiners for infinite particle systems in the continuum," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:spapps:v:168:y:2024:i:c:s0304414923002417
    DOI: 10.1016/j.spa.2023.104269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923002417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.104269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris, Theodore E., 1984. "Coalescing and noncoalescing stochastic flows in R1," Stochastic Processes and their Applications, Elsevier, vol. 17(2), pages 187-210, July.
    2. Yuri Kabanov & Masaaki Kijima & Sofiane Rinaz, 2007. "A positive interest rate model with sticky barrier," Quantitative Finance, Taylor & Francis Journals, vol. 7(3), pages 269-284.
    3. Nualart, David & Schoutens, Wim, 2000. "Chaotic and predictable representations for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 109-122, November.
    4. Brockington, Dom & Warren, Jon, 2023. "The Bethe ansatz for sticky Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 1-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auguste Aman, 2012. "Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1153-1172, December.
    2. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    3. Klimsiak, Tomasz, 2015. "Reflected BSDEs on filtered probability spaces," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4204-4241.
    4. Choe, Hi Jun & Lee, Ji Min & Lee, Jung-Kyung, 2018. "Malliavin calculus for subordinated Lévy process," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 392-401.
    5. Horst Osswald, 2009. "A Smooth Approach to Malliavin Calculus for Lévy Processes," Journal of Theoretical Probability, Springer, vol. 22(2), pages 441-473, June.
    6. Jamshidian, Farshid, 2008. "On the combinatorics of iterated stochastic integrals," MPRA Paper 7165, University Library of Munich, Germany.
    7. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
    8. Hidenori Futami, 2009. "Multi-factor Affine Term Structure Model with Single Regime Shift: Real Term Structure under Zero Interest Rate," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(4), pages 347-369, December.
    9. Langovoy, Mikhail, 2011. "Algebraic polynomials and moments of stochastic integrals," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 627-631.
    10. El Otmani, Mohamed, 2008. "BSDE driven by a simple Lévy process with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 78(11), pages 1259-1265, August.
    11. Dorogovtsev, Andrey A. & Riabov, Georgii V. & Schmalfuß, Björn, 2020. "Stationary points in coalescing stochastic flows on R," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4910-4926.
    12. Schoutens, Wim & Studer, Michael, 2003. "Short-term risk management using stochastic Taylor expansions under Lévy models," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 173-188, August.
    13. Masafumi Hayashi, 2010. "Coefficients of Asymptotic Expansions of SDE with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 373-389, December.
    14. Decreusefond, Laurent & Halconruy, Hélène, 2019. "Malliavin and Dirichlet structures for independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2611-2653.
    15. Kim, Mun-Chol & O, Hun, 2021. "A general comparison theorem for reflected BSDEs," Statistics & Probability Letters, Elsevier, vol. 173(C).
    16. Mohamed Otmani, 2009. "Reflected BSDE Driven by a Lévy Process," Journal of Theoretical Probability, Springer, vol. 22(3), pages 601-619, September.
    17. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    18. Mitsui, Ken-ichi & Tabata, Yoshio, 2008. "A stochastic linear-quadratic problem with Lévy processes and its application to finance," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 120-152, January.
    19. Evelina Shamarova & Rui S'a Pereira, 2013. "Hedging in a market with jumps - an FBSDE approach," Papers 1309.2211, arXiv.org, revised Aug 2017.
    20. Solé, Josep Lluís & Utzet, Frederic & Vives, Josep, 2007. "Canonical Lévy process and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(2), pages 165-187, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:168:y:2024:i:c:s0304414923002417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.