IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v154y2022icp1-25.html
   My bibliography  Save this article

Controlled ordinary differential equations with random path-dependent coefficients and stochastic path-dependent Hamilton–Jacobi equations

Author

Listed:
  • Qiu, Jinniao

Abstract

This paper is devoted to the stochastic optimal control problem of ordinary differential equations allowing for both path-dependence and measurable randomness. As opposed to the deterministic path-dependent cases, the value function turns out to be a random field on the path space and it is characterized by a stochastic path-dependent Hamilton–Jacobi (SPHJ) equation. A notion of viscosity solution is proposed and the value function is proved to be the unique viscosity solution to the associated SPHJ equation.

Suggested Citation

  • Qiu, Jinniao, 2022. "Controlled ordinary differential equations with random path-dependent coefficients and stochastic path-dependent Hamilton–Jacobi equations," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 1-25.
  • Handle: RePEc:eee:spapps:v:154:y:2022:i:c:p:1-25
    DOI: 10.1016/j.spa.2022.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922001922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Bender & Nikolai Dokuchaev, 2016. "A First-Order Bspde For Swing Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 26(3), pages 461-491, July.
    2. Detemple, Jerome B & Zapatero, Fernando, 1991. "Asset Prices in an Exchange Economy with Habit Formation," Econometrica, Econometric Society, vol. 59(6), pages 1633-1657, November.
    3. Qiu, Jinniao, 2017. "Weak solution for a class of fully nonlinear stochastic Hamilton–Jacobi–Bellman equations," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1926-1959.
    4. Briand, Ph. & Delyon, B. & Hu, Y. & Pardoux, E. & Stoica, L., 2003. "Lp solutions of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 109-129, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Jinniao Qiu & Yao Yao, 2020. "Pricing Options Under Rough Volatility with Backward SPDEs," Papers 2008.01241, arXiv.org.
    2. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    3. Kris Jacobs, 2001. "Estimating Nonseparable Preference Specifications for Asset Market Participants," CIRANO Working Papers 2001s-12, CIRANO.
    4. Weidong Tian & Murray Carlson & David A. Chapman & Ron Kaniel & Hong Yan, 2017. "Specification Error, Estimation Risk, and Conditional Portfolio Rules," International Review of Finance, International Review of Finance Ltd., vol. 17(2), pages 263-288, June.
    5. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    6. Li, Xun & Yu, Xiang & Zhang, Qinyi, 2023. "Optimal consumption and life insurance under shortfall aversion and a drawdown constraint," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 25-45.
    7. Antonelli, Fabio & Barucci, Emilio & Mancino, Maria Elvira, 2001. "Asset pricing with a forward-backward stochastic differential utility," Economics Letters, Elsevier, vol. 72(2), pages 151-157, August.
    8. Bowman, David & Minehart, Deborah & Rabin, Matthew, 1999. "Loss aversion in a consumption-savings model," Journal of Economic Behavior & Organization, Elsevier, vol. 38(2), pages 155-178, February.
    9. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    10. Eduard Dubin & Olesya V. Grishchenko & Vasily Kartashov, 2012. "Habit formation heterogeneity: Implications for aggregate asset pricing," Finance and Economics Discussion Series 2012-07, Board of Governors of the Federal Reserve System (U.S.).
    11. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    12. Jacobs, Kris, 2000. "Estimating Nonseparable Preference Specifications for Asset Market Participants," Econometric Society World Congress 2000 Contributed Papers 1472, Econometric Society.
    13. Kris Jacobs, 2002. "The Rate of Risk Aversion May Be Lower Than You Think," CIRANO Working Papers 2002s-08, CIRANO.
    14. Aase, Knut K., 2004. "Jump Dynamics: The Equity Premium and the Risk-Free Rate Puzzles," Discussion Papers 2004/12, Norwegian School of Economics, Department of Business and Management Science.
    15. Graewe, Paulwin & Popier, Alexandre, 2021. "Asymptotic approach for backward stochastic differential equation with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 247-277.
    16. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    17. Curatola, Giuliano, 2015. "Loss aversion, habit formation and the term structures of equity and interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 103-122.
    18. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2021. "Optimal Investment and Consumption under a Habit-Formation Constraint," Papers 2102.03414, arXiv.org, revised Nov 2021.
    19. Fouda, Henri & Kryzanowski, Lawrence & Chau To, Minh, 2001. "Futures market equilibrium with heterogeneity and a spot market at harvest," Journal of Economic Dynamics and Control, Elsevier, vol. 25(5), pages 805-824, May.
    20. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:154:y:2022:i:c:p:1-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.