Moving average Multifractional Processes with Random Exponent: Lower bounds for local oscillations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2022.01.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. Bianchi & A. Pantanella & A. Pianese, 2013. "Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1317-1330, July.
- Ayache, Antoine, 2020. "Lower bound for local oscillations of Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4593-4607.
- Bianchi, Sergio & Pianese, Augusto, 2014. "Multifractional processes in finance," Risk and Decision Analysis, IOS Press, issue 5, pages 1-22.
- Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sergio Bianchi & Augusto Pianese & Massimiliano Frezza, 2020. "A distribution‐based method to gauge market liquidity through scale invariance between investment horizons," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(5), pages 809-824, September.
- Massimiliano Frezza & Sergio Bianchi & Augusto Pianese, 2022. "Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process," Computational Management Science, Springer, vol. 19(1), pages 99-132, January.
- Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2015. "Time-dependent scaling patterns in high frequency financial data," Papers 1508.07428, arXiv.org, revised Dec 2015.
- Bianchi, Sergio & Pianese, Augusto, 2018. "Time-varying Hurst–Hölder exponents and the dynamics of (in)efficiency in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 64-75.
- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Sergio Bianchi & Massimiliano Frezza, 2018. "Liquidity, Efficiency and the 2007-2008 Global Financial Crisis," Annals of Economics and Finance, Society for AEF, vol. 19(2), pages 375-404, November.
- Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
- Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
- Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
- Sixian Jin & Qidi Peng & Henry Schellhorn, 2018. "Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 113-140, April.
- Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
- Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
- Kerchev, George & Nourdin, Ivan & Saksman, Eero & Viitasaari, Lauri, 2021. "Local times and sample path properties of the Rosenblatt process," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 498-522.
- Roy Cerqueti & Giulia Rotundo, 2015. "A review of aggregation techniques for agent-based models: understanding the presence of long-term memory," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1693-1717, July.
- Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
- Tsai, Yi-Cheng & Lei, Chin-Laung & Cheung, William & Wu, Chung-Shu & Ho, Jan-Ming & Wang, Chuan-Ju, 2018. "Exploring the Persistent Behavior of Financial Markets," Finance Research Letters, Elsevier, vol. 24(C), pages 199-220.
- Britta Förster & Bernd Hayo, 2018.
"Monetary and Fiscal Policy in Times of Crisis: A New Keynesian Perspective in Continuous Time,"
Manchester School, University of Manchester, vol. 86(1), pages 21-48, January.
- Bernd Hayo & Britta Niehof, 2014. "Monetary and Fiscal Policy in Times of Crises: A New Keynesian Perspective in Continuous Time," MAGKS Papers on Economics 201455, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Axel A. Araneda, 2023. "A multifractional option pricing formula," Papers 2303.16314, arXiv.org, revised Jun 2024.
- Paolo Angelis & Roberto Marchis & Mario Marino & Antonio Luciano Martire & Immacolata Oliva, 2021. "Betting on bitcoin: a profitable trading between directional and shielding strategies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 883-903, December.
- Villena, Marcelo J. & Araneda, Axel A., 2024. "On sectoral market efficiency," Finance Research Letters, Elsevier, vol. 61(C).
More about this item
Keywords
Fractional Brownian Motion; Varying Hurst parameter; Pointwise Hölder regularity; Itô integral;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:146:y:2022:i:c:p:143-163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.