IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v140y2021icp49-80.html
   My bibliography  Save this article

Moderate deviations of density-dependent Markov chains

Author

Listed:
  • Xue, Xiaofeng

Abstract

A density dependent Markov chain (DDMC) introduced in Kurtz (1978) is a special continuous time Markov process. Examples are considered in fields like epidemics and processes which describe chemical reactions. Moreover the Yule process is a further example. In this paper we prove a moderate deviation principle for the paths of a certain class of DDMC. The proofs of the bounds utilize an exponential martingale as well as a generalized version of Girsanov’s theorem. The exponential martingale is defined according to the generator of the DDMC.

Suggested Citation

  • Xue, Xiaofeng, 2021. "Moderate deviations of density-dependent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 49-80.
  • Handle: RePEc:eee:spapps:v:140:y:2021:i:c:p:49-80
    DOI: 10.1016/j.spa.2021.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921000983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puhalskii, A., 1994. "The method of stochastic exponentials for large deviations," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 45-70, November.
    2. Kurtz, Thomas G., 1978. "Strong approximation theorems for density dependent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 6(3), pages 223-240, February.
    3. Gao, Fu-Qing, 1996. "Moderate deviations for martingales and mixing random processes," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 263-275, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuheng & Xue, Xiaofeng, 2023. "Moderate deviations of hitting times of a family of density-dependent Markov chains," Statistics & Probability Letters, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Gao, Fuqing, 2013. "Moderate deviation principle for Brownian motions on the unit sphere in Rd," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2486-2491.
    2. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    3. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    4. I. G. Grama & E. Haeusler, 2006. "An Asymptotic Expansion for Probabilities of Moderate Deviations for Multivariate Martingales," Journal of Theoretical Probability, Springer, vol. 19(1), pages 1-44, January.
    5. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    7. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Jamaal Ahmad & Mogens Bladt, 2022. "Phase-type representations of stochastic interest rates with applications to life insurance," Papers 2207.11292, arXiv.org, revised Nov 2022.
    9. He, Yuheng & Xue, Xiaofeng, 2023. "Moderate deviations of hitting times of a family of density-dependent Markov chains," Statistics & Probability Letters, Elsevier, vol. 195(C).
    10. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    11. Horst, Ulrich, 2010. "Dynamic systems of social interactions," Journal of Economic Behavior & Organization, Elsevier, vol. 73(2), pages 158-170, February.
    12. Lücke, Marvin & Heitzig, Jobst & Koltai, Péter & Molkenthin, Nora & Winkelmann, Stefanie, 2023. "Large population limits of Markov processes on random networks," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    13. Natiello, Mario A. & Solari, Hernán G., 2020. "Modelling population dynamics based on experimental trials with genetically modified (RIDL) mosquitoes," Ecological Modelling, Elsevier, vol. 424(C).
    14. Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
    15. Ulrich Horst & Jan Wezelburger, 2006. "Non-ergodic Behavior in a Financial Market with Interacting Investors," 2006 Meeting Papers 229, Society for Economic Dynamics.
    16. Dembo, Amir & Zajic, Tim, 1995. "Large deviations: From empirical mean and measure to partial sums process," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 191-224, June.
    17. Ramandeep S. Randhawa & Sunil Kumar, 2009. "Multiserver Loss Systems with Subscribers," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 142-179, February.
    18. Quentin Clairon & Chloé Pasin & Irene Balelli & Rodolphe Thiébaut & Mélanie Prague, 2024. "Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: an optimal control approach," Computational Statistics, Springer, vol. 39(6), pages 2975-3005, September.
    19. Florin Avram & Rim Adenane & David I. Ketcheson, 2021. "A Review of Matrix SIR Arino Epidemic Models," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
    20. Benoist, Tristan & Fatras, Jan-Luka & Pellegrini, Clément, 2023. "Limit theorems for quantum trajectories," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 288-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:140:y:2021:i:c:p:49-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.