IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v131y2021icp172-200.html
   My bibliography  Save this article

The almost sure semicircle law for random band matrices with dependent entries

Author

Listed:
  • Fleermann, Michael
  • Kirsch, Werner
  • Kriecherbauer, Thomas

Abstract

We analyze the empirical spectral distribution of random periodic band matrices with correlated entries. The correlation structure we study was first introduced in Hochstättler et al. (2015) by Hochstättler, Kirsch and Warzel, who named their setup almost uncorrelated and showed convergence to the semicircle distribution in probability. We strengthen their results which turn out to be also valid almost surely. Moreover, we extend them to band matrices. Sufficient conditions for convergence to the semicircle law both in probability and almost surely are provided. In contrast to convergence in probability, almost sure convergence seems to require a minimal growth rate for the bandwidth in the correlated case. Examples that fit our general setup include Curie–Weiss distributed, correlated Gaussian, and as a special case, independent entries.

Suggested Citation

  • Fleermann, Michael & Kirsch, Werner & Kriecherbauer, Thomas, 2021. "The almost sure semicircle law for random band matrices with dependent entries," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 172-200.
  • Handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:172-200
    DOI: 10.1016/j.spa.2020.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banna, Marwa & Merlevède, Florence & Peligrad, Magda, 2015. "On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2700-2726.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanders, Jaron & Van Werde, Alexander, 2023. "Singular value distribution of dense random matrices with block Markovian dependence," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 453-504.
    2. Michael Fleermann & Werner Kirsch & Gabor Toth, 2022. "Local Central Limit Theorem for Multi-group Curie–Weiss Models," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2009-2019, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    2. Heiny, Johannes & Mikosch, Thomas, 2018. "Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2779-2815.
    3. Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
    4. Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
    5. Alfredas Račkauskas & Charles Suquet, 2023. "Asymptotic Normality in Banach Spaces via Lindeberg Method," Journal of Theoretical Probability, Springer, vol. 36(1), pages 409-455, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:172-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.