IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i4p1913-1946.html
   My bibliography  Save this article

Optimal liquidation under partial information with price impact

Author

Listed:
  • Colaneri, Katia
  • Eksi, Zehra
  • Frey, Rüdiger
  • Szölgyenyi, Michaela

Abstract

We study the optimal liquidation problem in a market model where the bid price follows a geometric pure jump process whose local characteristics are driven by an unobservable finite-state Markov chain and by the liquidation rate. This model is consistent with stylized facts of high frequency data such as the discrete nature of tick data and the clustering in the order flow. We include both temporary and permanent effects into our analysis. We use stochastic filtering to reduce the optimal liquidation problem to an equivalent optimization problem under complete information. This leads to a stochastic control problem for piecewise deterministic Markov processes (PDMPs). We carry out a detailed mathematical analysis of this problem. In particular, we derive the optimality equation for the value function, we characterize the value function as continuous viscosity solution of the associated dynamic programming equation, and we prove a novel comparison result. The paper concludes with numerical results illustrating the impact of partial information and price impact on the value function and on the optimal liquidation rate.

Suggested Citation

  • Colaneri, Katia & Eksi, Zehra & Frey, Rüdiger & Szölgyenyi, Michaela, 2020. "Optimal liquidation under partial information with price impact," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1913-1946.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:1913-1946
    DOI: 10.1016/j.spa.2019.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919303771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Hua & Mamaysky, Harry, 2005. "Dynamic trading policies with price impact," Journal of Economic Dynamics and Control, Elsevier, vol. 29(5), pages 891-930, May.
    2. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    3. Alexander Schied, 2012. "Robust Strategies for Optimal Order Execution in the Almgren-Chriss Framework," Papers 1204.2717, arXiv.org, revised May 2013.
    4. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    5. Alexander Schied, 2013. "Robust Strategies for Optimal Order Execution in the Almgren--Chriss Framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(3), pages 264-286, July.
    6. Nicole Bäuerle & Ulrich Rieder, 2009. "MDP algorithms for portfolio optimization problems in pure jump markets," Finance and Stochastics, Springer, vol. 13(4), pages 591-611, September.
    7. Rüdiger Frey & Thorsten Schmidt, 2012. "Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering," Finance and Stochastics, Springer, vol. 16(1), pages 105-133, January.
    8. Charles-Albert Lehalle & Othmane Mounjid & Mathieu Rosenbaum, 2018. "Optimal liquidity-based trading tactics," Papers 1803.05690, arXiv.org.
    9. Philippe Casgrain & Sebastian Jaimungal, 2019. "Trading algorithms with learning in latent alpha models," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 735-772, July.
    10. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    11. �lvaro Cartea & Sebastian Jaimungal, 2013. "Modelling Asset Prices for Algorithmic and High-Frequency Trading," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(6), pages 512-547, December.
    12. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Dammann & Giorgio Ferrari, 2023. "Optimal execution with multiplicative price impact and incomplete information on the return," Finance and Stochastics, Springer, vol. 27(3), pages 713-768, July.
    2. Dammann, Felix & Ferrari, Giorgio, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Center for Mathematical Economics Working Papers 663, Center for Mathematical Economics, Bielefeld University.
    3. Felix Dammann & Giorgio Ferrari, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Papers 2202.10414, arXiv.org, revised Nov 2022.
    4. Colaneri, Katia & Frey, Rüdiger, 2021. "Classical solutions of the backward PIDE for Markov modulated marked point processes and applications to CAT bonds," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 498-507.
    5. Bandini, Elena & Calvia, Alessandro & Colaneri, Katia, 2022. "Stochastic filtering of a pure jump process with predictable jumps and path-dependent local characteristics," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 396-435.
    6. Giorgia Callegaro & Claudia Ceci & Giorgio Ferrari, 2020. "Optimal reduction of public debt under partial observation of the economic growth," Finance and Stochastics, Springer, vol. 24(4), pages 1083-1132, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brunovský, Pavol & Černý, Aleš & Komadel, Ján, 2018. "Optimal trade execution under endogenous pressure to liquidate: Theory and numerical solutions," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1159-1171.
    2. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    3. Julien Vaes & Raphael Hauser, 2018. "Optimal Trade Execution with Uncertain Volume Target," Papers 1810.11454, arXiv.org, revised Sep 2021.
    4. Phillip Monin, 2014. "Hedging Market Risk in Optimal Liquidation," Working Papers 14-08, Office of Financial Research, US Department of the Treasury.
    5. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    7. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    8. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    9. Qixuan Luo & Shijia Song & Handong Li, 2023. "Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1721-1750, December.
    10. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    11. Erhan Bayraktar & Alexander Munk, 2017. "Mini-Flash Crashes, Model Risk, and Optimal Execution," Papers 1705.09827, arXiv.org, revised Aug 2018.
    12. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    13. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.
    14. Dammann, Felix & Ferrari, Giorgio, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Center for Mathematical Economics Working Papers 663, Center for Mathematical Economics, Bielefeld University.
    15. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    16. Takashi Kato, 2017. "An Optimal Execution Problem in the Volume-Dependent Almgren-Chriss Model," Papers 1701.08972, arXiv.org, revised Aug 2017.
    17. Weston Barger & Matthew Lorig, 2019. "Optimal Liquidation Under Stochastic Price Impact," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-28, March.
    18. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    19. Fabien Guilbaud & Mohamed Mnif & Huy^en Pham, 2010. "Numerical methods for an optimal order execution problem," Papers 1006.0768, arXiv.org.
    20. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:1913-1946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.