IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i9p3116-3128.html
   My bibliography  Save this article

Exponentially concave functions and high dimensional stochastic portfolio theory

Author

Listed:
  • Pal, Soumik

Abstract

We construct an explicit example of asymptotic short term relative arbitrage. Specifically, for every n we assume an n dimensional semimartingale market model that starts from a heavy-tailed initial position in the unit simplex and impose weak assumptions on its volatility. We then construct a sequence of portfolios, one for each dimension, that outperform the market portfolio in dimension n by an amount Mn by time δn with a probability at least 1−qn. Here Mn→∞ exponentially fast in n and δn,qn decrease to zero. Moreover, these portfolios never underperform below a pre-specified lower bound. The key fact is that it is possible to construct a sequence of exponentially concave functions on the unit simplex of increasing concavity because the typical diameter of the unit simplex in dimension n is O(1∕n).

Suggested Citation

  • Pal, Soumik, 2019. "Exponentially concave functions and high dimensional stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3116-3128.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3116-3128
    DOI: 10.1016/j.spa.2018.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918304721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irene Klein, 2000. "A Fundamental Theorem of Asset Pricing for Large Financial Markets," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 443-458, October.
    2. Robert Fernholz & Ioannis Karatzas & Constantinos Kardaras, 2005. "Diversity and relative arbitrage in equity markets," Finance and Stochastics, Springer, vol. 9(1), pages 1-27, January.
    3. Fernholz, E. Robert & Karatzas, Ioannis & Ruf, Johannes, 2018. "Volatility and arbitrage," LSE Research Online Documents on Economics 75234, London School of Economics and Political Science, LSE Library.
    4. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    5. Soumik Pal & Ting-Kam Leonard Wong, 2014. "The geometry of relative arbitrage," Papers 1402.3720, arXiv.org, revised Jul 2015.
    6. Y.M. Kabanov & D.O. Kramkov, 1998. "Asymptotic arbitrage in large financial markets," Finance and Stochastics, Springer, vol. 2(2), pages 143-172.
    7. Robert Fernholz, 2015. "An example of short-term relative arbitrage," Papers 1510.02292, arXiv.org.
    8. Fernholz, Robert, 1999. "On the diversity of equity markets," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 393-417, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Larsson & Johannes Ruf, 2020. "Relative Arbitrage: Sharp Time Horizons and Motion by Curvature," Papers 2003.13601, arXiv.org, revised Feb 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumik Pal, 2016. "Exponentially concave functions and high dimensional stochastic portfolio theory," Papers 1603.01865, arXiv.org, revised Mar 2016.
    2. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    3. Winslow Strong, 2014. "Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension," Finance and Stochastics, Springer, vol. 18(3), pages 487-514, July.
    4. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    5. Michał Baran, 2007. "Asymptotic pricing in large financial markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 1-20, August.
    6. Miklos Rasonyi, 2015. "Maximizing expected utility in the Arbitrage Pricing Model," Papers 1508.07761, arXiv.org, revised Mar 2017.
    7. Jörg Osterrieder & Thorsten Rheinländer, 2006. "Arbitrage Opportunities in Diverse Markets via a Non-equivalent Measure Change," Annals of Finance, Springer, vol. 2(3), pages 287-301, July.
    8. Winslow Strong & Jean-Pierre Fouque, 2011. "Diversity and arbitrage in a regulatory breakup model," Annals of Finance, Springer, vol. 7(3), pages 349-374, August.
    9. Laurence Carassus & Miklos Rasonyi, 2019. "Risk-neutral pricing for APT," Papers 1904.11252, arXiv.org, revised Oct 2020.
    10. Martin Larsson & Johannes Ruf, 2021. "Relative arbitrage: Sharp time horizons and motion by curvature," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 885-906, July.
    11. Attila Herczegh & Vilmos Prokaj & Mikl'os R'asonyi, 2013. "Diversity and no arbitrage," Papers 1301.4173, arXiv.org, revised Aug 2014.
    12. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
    13. Miklós Rásonyi, 2016. "On Optimal Strategies For Utility Maximizers In The Arbitrage Pricing Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-12, November.
    14. De Donno, M. & Guasoni, P. & Pratelli, M., 2005. "Super-replication and utility maximization in large financial markets," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 2006-2022, December.
    15. Micha{l} Barski, 2015. "Asymptotic pricing in large financial markets," Papers 1512.06582, arXiv.org.
    16. Winslow Strong, 2011. "Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension," Papers 1112.5340, arXiv.org.
    17. Ioannis Karatzas & Johannes Ruf, 2016. "Trading Strategies Generated by Lyapunov Functions," Papers 1603.08245, arXiv.org.
    18. Michael Heinrich Baumann, 2022. "Beating the market? A mathematical puzzle for market efficiency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 279-325, June.
    19. Miklós Rásonyi, 2004. "Arbitrage pricing theory and risk-neutral measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(2), pages 109-123, December.
    20. Laurence Carassus & Miklós Rásonyi, 2020. "Risk-Neutral Pricing for Arbitrage Pricing Theory," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 248-263, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3116-3128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.