IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i1p354-371.html
   My bibliography  Save this article

A sharp first order analysis of Feynman–Kac particle models, Part II: Particle Gibbs samplers

Author

Listed:
  • Del Moral, Pierre
  • Jasra, Ajay

Abstract

This article provides a new theory for the analysis of the particle Gibbs (PG) sampler (Andrieu et al., 2010). Following the work of Del Moral and Jasra (2017) we provide some analysis of the particle Gibbs sampler, giving first order expansions of the kernel and minorization estimates. In addition, first order propagation of chaos estimates are derived for empirical measures of the dual particle model with a frozen path, also known as the conditional sequential Monte Carlo (SMC) update of the PG sampler. Backward and forward PG samplers are discussed, including a first comparison of the contraction estimates obtained by first order estimates. We illustrate our results with an example of fixed parameter estimation arising in hidden Markov models.

Suggested Citation

  • Del Moral, Pierre & Jasra, Ajay, 2018. "A sharp first order analysis of Feynman–Kac particle models, Part II: Particle Gibbs samplers," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 354-371.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:354-371
    DOI: 10.1016/j.spa.2017.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    2. Fredrik Lindsten & Randal Douc & Eric Moulines, 2015. "Uniform Ergodicity of the Particle Gibbs Sampler," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 775-797, September.
    3. repec:dau:papers:123456789/11498 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Gong & David S. Stoffer, 2021. "A Note on Efficient Fitting of Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 186-200, March.
    2. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    3. Vergé, Christelle & Morio, Jérôme & Moral, Pierre Del, 2016. "An island particle algorithm for rare event analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 63-75.
    4. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    5. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    6. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    7. Svetoslav Kostov & Nick Whiteley, 2017. "An Algorithm for Approximating the Second Moment of the Normalizing Constant Estimate from a Particle Filter," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 799-818, September.
    8. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    9. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    10. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
    11. Franks, Jordan & Vihola, Matti, 2020. "Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6157-6183.
    12. Diana Giurghita & Dirk Husmeier, 2018. "Statistical modelling of cell movement," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 265-280, August.
    13. Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
    14. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    16. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    17. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    18. Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
    19. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    20. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:354-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.