Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-017-0741-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
- Marwa Banna & Florence Merlevède, 2015. "Limiting Spectral Distribution of Large Sample Covariance Matrices Associated with a Class of Stationary Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 745-783, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sanders, Jaron & Van Werde, Alexander, 2023. "Singular value distribution of dense random matrices with block Markovian dependence," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 453-504.
- Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
- Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
- Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
- Alfredas Račkauskas & Charles Suquet, 2023. "Asymptotic Normality in Banach Spaces via Lindeberg Method," Journal of Theoretical Probability, Springer, vol. 36(1), pages 409-455, March.
More about this item
Keywords
Random matrices; Sample covariance matrices; Central Limit Theorem; Linear eigenvalue statistics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:31:y:2018:i:2:d:10.1007_s10959-017-0741-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.