IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i1p915-926.html
   My bibliography  Save this article

Infinitesimal generators of q-Meixner processes

Author

Listed:
  • Bryc, Wlodzimierz
  • Wesołowski, Jacek

Abstract

We show that the weak infinitesimal generator of a class of Markov processes acts on bounded continuous functions with bounded continuous second derivative as a singular integral with respect to the orthogonality measure of the explicit family of polynomials.

Suggested Citation

  • Bryc, Wlodzimierz & Wesołowski, Jacek, 2014. "Infinitesimal generators of q-Meixner processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 915-926.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:915-926
    DOI: 10.1016/j.spa.2013.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bryc, Wlodek, 2010. "Markov processes with free-Meixner laws," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1393-1403, August.
    2. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryc, Włodek, 2014. "On integration with respect to the q-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 257-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    2. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    3. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    4. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    5. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    6. Bryc, Włodek & Fakhfakh, Raouf & Hassairi, Abdelhamid, 2014. "On Cauchy–Stieltjes kernel families," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 295-312.
    7. Ben Zineb Tarik & Gobet Emmanuel, 2013. "Preliminary control variates to improve empirical regression methods," Monte Carlo Methods and Applications, De Gruyter, vol. 19(4), pages 331-354, December.
    8. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    9. Francesca Biagini & Yinglin Zhang, 2016. "Polynomial Diffusion Models for Life Insurance Liabilities," Papers 1602.07910, arXiv.org, revised Sep 2016.
    10. Giorgia Callegaro & Lucio Fiorin & Andrea Pallavicini, 2021. "Quantization goes polynomial," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 361-376, March.
    11. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    12. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    13. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    14. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    15. Chenyu Zhao & Misha van Beek & Peter Spreij & Makhtar Ba, 2021. "Polynomial Approximation of Discounted Moments," Papers 2111.00274, arXiv.org.
    16. Hiroaki Yoshida, 2020. "Remarks on a Free Analogue of the Beta Prime Distribution," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1363-1400, September.
    17. Abi Jaber, Eduardo & Bouchard, Bruno & Illand, Camille, 2019. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1726-1748.
    18. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    19. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    20. Graczyk, Piotr & Małecki, Jacek & Mayerhofer, Eberhard, 2018. "A characterization of Wishart processes and Wishart distributions," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1386-1404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:915-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.