IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v121y2017icp18-28.html
   My bibliography  Save this article

Derivative of intersection local time of independent symmetric stable motions

Author

Listed:
  • Yan, Litan
  • Yu, Xianye
  • Chen, Ruqing

Abstract

Let X and X̃ be two mutually independent symmetric stable motions in R1 with respective indices α and α̃. We show that the intersection local time βt(x) of X and X̃ is differentiable in the spatial variable if α+α̃>3, and moreover we have that the p-variation of the derivative βt′(0) is zero when p>2α∨α̃α∨α̃+α+α̃−3.

Suggested Citation

  • Yan, Litan & Yu, Xianye & Chen, Ruqing, 2017. "Derivative of intersection local time of independent symmetric stable motions," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 18-28.
  • Handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:18-28
    DOI: 10.1016/j.spl.2016.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215303060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurent, Clément, 2010. "Large deviations for self-intersection local times of stable random walks," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2190-2211, November.
    2. Yan, Litan & Yang, Xiangfeng & Lu, Yunsheng, 2008. "p-variation of an integral functional driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1148-1157, July.
    3. Jung, Paul & Markowsky, Greg, 2014. "On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3846-3868.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Qun & Yu, Xianye, 2017. "Fractional smoothness of derivative of self-intersection local times," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 241-251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjun Guo & Yaozhong Hu & Yanping Xiao, 2019. "Higher-Order Derivative of Intersection Local Time for Two Independent Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1190-1201, September.
    2. Qian Yu & Xianye Yu, 2024. "Limit Theorem for Self-intersection Local Time Derivative of Multidimensional Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2054-2075, September.
    3. Paul Jung & Greg Markowsky, 2015. "Hölder Continuity and Occupation-Time Formulas for fBm Self-Intersection Local Time and Its Derivative," Journal of Theoretical Probability, Springer, vol. 28(1), pages 299-312, March.
    4. Jaramillo, Arturo & Nualart, David, 2017. "Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 669-700.
    5. Qian Yu, 2021. "Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1749-1774, December.
    6. Jung, Paul & Markowsky, Greg, 2014. "On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3846-3868.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:18-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.