IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i7p2610-2638.html
   My bibliography  Save this article

On the Wiener–Hopf factorization for Lévy processes with bounded positive jumps

Author

Listed:
  • Kuznetsov, A.
  • Peng, X.

Abstract

We study the Wiener–Hopf factorization for Lévy processes with bounded positive jumps and arbitrary negative jumps. We prove that the positive Wiener–Hopf factor can be expressed as an infinite product involving solutions to the equation ψ(z)=q, where ψ is the Laplace exponent. Under additional regularity assumptions on the Lévy measure we obtain an asymptotic expression for these solutions. When the process is spectrally negative with bounded jumps, we derive a series representation for the scale function. In order to illustrate possible applications, we discuss the implementation of numerical algorithms and present the results of several numerical experiments.

Suggested Citation

  • Kuznetsov, A. & Peng, X., 2012. "On the Wiener–Hopf factorization for Lévy processes with bounded positive jumps," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2610-2638.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:7:p:2610-2638
    DOI: 10.1016/j.spa.2012.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Jeannin & Martijn Pistorius, 2010. "A transform approach to compute prices and Greeks of barrier options driven by a class of Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 629-644.
    2. Chaumont, L. & Kyprianou, A.E. & Pardo, J.C., 2009. "Some explicit identities associated with positive self-similar Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 980-1000, March.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    5. Fourati, Sonia, 2012. "Explicit solutions of the exit problem for a class of Lévy processes; applications to the pricing of double-barrier options," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1034-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan Wu & Jiang Zhou & Shuang Yu, 2017. "Occupation Times of General Lévy Processes," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1565-1604, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    2. Tung-Lung Wu, 2020. "Boundary Crossing Probabilities of Jump Diffusion Processes to Time-Dependent Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 13-24, March.
    3. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    4. Bo, Lijun & Song, Renming & Tang, Dan & Wang, Yongjin & Yang, Xuewei, 2012. "Lévy risk model with two-sided jumps and a barrier dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 280-291.
    5. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    6. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    7. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    8. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    9. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    10. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    11. Ning Cai & Wei Zhang, 2020. "Regime Classification and Stock Loan Valuation," Operations Research, INFORMS, vol. 68(4), pages 965-983, July.
    12. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    13. Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
    14. Przemysław Klusik & Zbigniew Palmowski, 2014. "A Note on Wiener–Hopf Factorization for Markov Additive Processes," Journal of Theoretical Probability, Springer, vol. 27(1), pages 202-219, March.
    15. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    16. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    17. Fourati, Sonia, 2012. "Explicit solutions of the exit problem for a class of Lévy processes; applications to the pricing of double-barrier options," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1034-1067.
    18. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    19. Mitya Boyarchenko & Sergei Levendorskiĭ, 2015. "Ghost calibration and the pricing of barrier options and CDS in spectrally one-sided L�vy models: the parabolic Laplace inversion method," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 421-441, March.
    20. Sergei Levendorskiĭ, 2017. "ULTRA-FAST PRICING BARRIER OPTIONS AND CDSs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:7:p:2610-2638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.