IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v89y2000i1p69-79.html
   My bibliography  Save this article

On large deviations for SDEs with small diffusion and averaging

Author

Listed:
  • Veretennikov, A. Yu.

Abstract

A large deviation principle is established for stochastic differential equation systems with slow and fast components and small diffusions in the slow component.

Suggested Citation

  • Veretennikov, A. Yu., 2000. "On large deviations for SDEs with small diffusion and averaging," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 69-79, September.
  • Handle: RePEc:eee:spapps:v:89:y:2000:i:1:p:69-79
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00013-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freidlin, Mark I. & Sowers, Richard B., 1999. "A comparison of homogenization and large deviations, with applications to wavefront propagation," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 23-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    2. Dupuis, Paul & Spiliopoulos, Konstantinos, 2012. "Large deviations for multiscale diffusion via weak convergence methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1947-1987.
    3. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupuis, Paul & Spiliopoulos, Konstantinos, 2012. "Large deviations for multiscale diffusion via weak convergence methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1947-1987.
    2. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.
    3. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
    4. Cl´ement Manga & Alioune Coulibaly & Alassane Diedhiou, 2019. "On Jumps Stochastic Evolution Equations With Application of Homogenization and Large Deviations," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 125-134, April.
    5. Solesne Bourguin & Thanh Dang & Konstantinos Spiliopoulos, 2023. "Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-57, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:89:y:2000:i:1:p:69-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.