IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i8p4667-4692.html
   My bibliography  Save this article

Statistical tests of heterogeneity for anisotropic multifractional Brownian fields

Author

Listed:
  • Vu, Huong T.L.
  • Richard, Frédéric J.P.

Abstract

In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.

Suggested Citation

  • Vu, Huong T.L. & Richard, Frédéric J.P., 2020. "Statistical tests of heterogeneity for anisotropic multifractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4667-4692.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:4667-4692
    DOI: 10.1016/j.spa.2020.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918303430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoine Ayache & Pierre Bertrand & Jacques Véhel, 2007. "A Central Limit Theorem for the Generalized Quadratic Variation of the Step Fractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 10(1), pages 1-27, January.
    2. Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
    3. Benassi, Albert & Cohen, Serge & Istas, Jacques, 1998. "Identifying the multifractional function of a Gaussian process," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 337-345, August.
    4. Albert Benassi & Pierre Bertrand & Serge Cohen & Jacques Istas, 2000. "Identification of the Hurst Index of a Step Fractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 101-111, January.
    5. Benassi, Albert & Cohen, Serge & Istas, Jacques & Jaffard, Stéphane, 1998. "Identification of filtered white noises," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 31-49, June.
    6. Biermé, Hermine & Meerschaert, Mark M. & Scheffler, Hans-Peter, 2007. "Operator scaling stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 312-332, March.
    7. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    8. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frezza, Massimiliano, 2012. "Modeling the time-changing dependence in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1510-1520.
    2. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    3. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
    4. Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    5. Massimiliano Frezza & Sergio Bianchi & Augusto Pianese, 2022. "Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process," Computational Management Science, Springer, vol. 19(1), pages 99-132, January.
    6. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    8. Pierre R. Bertrand & Marie-Eliette Dury & Bing Xiao, 2020. "A study of Chinese market efficiency, Shanghai versus Shenzhen: Evidence based on multifractional models," Post-Print hal-03031766, HAL.
    9. repec:jss:jstsof:23:i01 is not listed on IDEAS
    10. Pierre R. Bertrand & Abdelkader Hamdouni & Samia Khadhraoui, 2012. "Modelling NASDAQ Series by Sparse Multifractional Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 107-124, March.
    11. Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
    12. Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
    13. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    14. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    15. Kubilius, K. & Mishura, Y., 2012. "The rate of convergence of Hurst index estimate for the stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3718-3739.
    16. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    17. Peng, Qidi, 2011. "Uniform Hölder exponent of a stationary increments Gaussian process: Estimation starting from average values," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1326-1335, August.
    18. Frezza, Massimiliano, 2014. "Goodness of fit assessment for a fractal model of stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 41-50.
    19. Kęstutis Kubilius & Dmitrij Melichov, 2016. "Exact Confidence Intervals of the Extended Orey Index for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 785-804, September.
    20. Lim, C.Y. & Meerschaert, M.M. & Scheffler, H.-P., 2014. "Parameter estimation for operator scaling random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 172-183.
    21. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:4667-4692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.