IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i9p1776-1794.html
   My bibliography  Save this article

Singularities of the matrix exponent of a Markov additive process with one-sided jumps

Author

Listed:
  • Ivanovs, Jevgenijs
  • Boxma, Onno
  • Mandjes, Michel

Abstract

We analyze the number of zeros of det(F([alpha])), where F([alpha]) is the matrix exponent of a Markov Additive Process (MAP) with one-sided jumps. The focus is on the number of zeros in the right half of the complex plane, where F([alpha]) is analytic. In addition, we also consider the case of a MAP killed at an independent exponential time. The corresponding zeros can be seen as the roots of a generalized Cramér-Lundberg equation. We argue that our results are particularly useful in fluctuation theory for MAPs, which leads to numerous applications in queueing theory and finance.

Suggested Citation

  • Ivanovs, Jevgenijs & Boxma, Onno & Mandjes, Michel, 2010. "Singularities of the matrix exponent of a Markov additive process with one-sided jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1776-1794, August.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1776-1794
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00130-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. J. K. Regterschot & J. H. A. de Smit, 1986. "The Queue M|G|1 with Markov Modulated Arrivals and Services," Mathematics of Operations Research, INFORMS, vol. 11(3), pages 465-483, August.
    2. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    3. Lu, Yi & Li, Shuanming, 2005. "On the probability of ruin in a Markov-modulated risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 522-532, December.
    4. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    5. Rajeeva L. Karandikar & Vidyadhar G. Kulkarni, 1995. "Second-Order Fluid Flow Models: Reflected Brownian Motion in a Random Environment," Operations Research, INFORMS, vol. 43(1), pages 77-88, February.
    6. H. R. Gail & S. L. Hantler & B. A. Taylor, 1992. "On a Preemptive Markovian Queue with Multiple Servers and Two Priority Classes," Mathematics of Operations Research, INFORMS, vol. 17(2), pages 365-391, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    2. Minghua Wan & Mingxiu Cai & Guowei Yang, 2023. "Robust Exponential Graph Regularization Non-Negative Matrix Factorization Technology for Feature Extraction," Mathematics, MDPI, vol. 11(7), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    2. Xin Zhang, 2008. "On the Ruin Problem in a Markov-Modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 225-238, June.
    3. Boudreault, Mathieu & Cossette, Hélène & Marceau, Étienne, 2014. "Risk models with dependence between claim occurrences and severities for Atlantic hurricanes," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 123-132.
    4. Wang, Zijia & Landriault, David & Li, Shu, 2021. "An insurance risk process with a generalized income process: A solvency analysis," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 133-146.
    5. Hyunjoo Yoo & Bara Kim & Jeongsim Kim & Jiwook Jang, 2020. "Transform approach for discounted aggregate claims in a risk model with descendant claims," Annals of Operations Research, Springer, vol. 293(1), pages 175-192, October.
    6. Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
    7. Zhu, Jinxia & Yang, Hailiang, 2008. "Ruin theory for a Markov regime-switching model under a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 311-318, February.
    8. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    9. Wang, Guanqing & Wang, Guojing & Yang, Hailiang, 2016. "On a multi-dimensional risk model with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 73-83.
    10. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    11. Yujuan Huang & Wenguang Yu, 2013. "Studies on a Double Poisson-Geometric Insurance Risk Model with Interference," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, April.
    12. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    13. Boyarchenko Svetlana & Levendorskii Sergei Z, 2006. "General Option Exercise Rules, with Applications to Embedded Options and Monopolistic Expansion," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 6(1), pages 1-53, June.
    14. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    15. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    16. Tung-Lung Wu, 2020. "Boundary Crossing Probabilities of Jump Diffusion Processes to Time-Dependent Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 13-24, March.
    17. Zeng, Xudong, 2010. "Optimal reinsurance with a rescuing procedure," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 397-405, April.
    18. Das, S. & Kratz, M., 2012. "Alarm system for insurance companies: A strategy for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 53-65.
    19. Doney, Ron & Maller, Ross & Savov, Mladen, 2009. "Renewal theorems and stability for the reflected process," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1270-1297, April.
    20. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1776-1794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.