IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i10p3416-3434.html
   My bibliography  Save this article

Correlation cascades, ergodic properties and long memory of infinitely divisible processes

Author

Listed:
  • Magdziarz, Marcin

Abstract

In this paper, we investigate the properties of the recently introduced measure of dependence called correlation cascade. We show that the correlation cascade is a promising tool for studying the dependence structure of infinitely divisible processes. We describe the ergodic properties (ergodicity, weak mixing, mixing) of stationary infinitely divisible processes in the language of the correlation cascade and establish its relationship with the codifference. Using the correlation cascade, we investigate the dependence structure of four fractional [alpha]-stable stationary processes. We detect the property of long memory and verify the ergodic properties of the discussed processes.

Suggested Citation

  • Magdziarz, Marcin, 2009. "Correlation cascades, ergodic properties and long memory of infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3416-3434, October.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3416-3434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00108-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosinski, Jan & Zak, Tomasz, 1996. "Simple conditions for mixing of infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 277-288, February.
    2. Eliazar, Iddo & Klafter, Joseph, 2007. "Correlation cascades of Lévy-driven random processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 1-26.
    3. Cambanis, Stamatis & Hardin, Clyde D. & Weron, Aleksander, 1987. "Ergodic properties of stationary stable processes," Stochastic Processes and their Applications, Elsevier, vol. 24(1), pages 1-18, February.
    4. Krzysztof Burnecki & Makoto Maejima & Aleksander Weron, 1997. "The Lamperti transformation for self-similar processes," HSC Research Reports HSC/97/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    5. Gross, Aaron, 1994. "Some mixing conditions for stationary symmetric stable stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 51(2), pages 277-295, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabluchko, Zakhar & Schlather, Martin, 2010. "Ergodic properties of max-infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 281-295, March.
    2. Riccardo Passeggeri & Almut E. D. Veraart, 2019. "Mixing Properties of Multivariate Infinitely Divisible Random Fields," Journal of Theoretical Probability, Springer, vol. 32(4), pages 1845-1879, December.
    3. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    4. Wang, Yizao & Stoev, Stilian A. & Roy, Parthanil, 2012. "Decomposability for stable processes," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1093-1109.
    5. Paul Jung, 2014. "Random-Time Isotropic Fractional Stable Fields," Journal of Theoretical Probability, Springer, vol. 27(2), pages 618-633, June.
    6. Stilian Stoev & Murad S. Taqqu, 2005. "Asymptotic self‐similarity and wavelet estimation for long‐range dependent fractional autoregressive integrated moving average time series with stable innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 211-249, March.
    7. Hsing, Tailen, 1995. "Limit theorems for stable processes with application to spectral density estimation," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 39-71, May.
    8. Jan Rosiński & Tomasz Żak, 1997. "The Equivalence of Ergodicity and Weak Mixing for Infinitely Divisible Processes," Journal of Theoretical Probability, Springer, vol. 10(1), pages 73-86, January.
    9. Zakhar Kabluchko & Mikhail Lifshits, 2017. "Least Energy Approximation for Processes with Stationary Increments," Journal of Theoretical Probability, Springer, vol. 30(1), pages 268-296, March.
    10. Ibragimov, Ildar & Kabluchko, Zakhar & Lifshits, Mikhail, 2019. "Some extensions of linear approximation and prediction problems for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2758-2782.
    11. Mazur, Stepan & Otryakhin, Dmitry & Podolskij, Mark, 2018. "Estimation of the linear fractional stable motion," Working Papers 2018:3, Örebro University, School of Business.
    12. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
    13. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    14. Stoev, Stilian A., 2008. "On the ergodicity and mixing of max-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1679-1705, September.
    15. Mathias Mørck Ljungdahl & Mark Podolskij, 2022. "Multidimensional parameter estimation of heavy‐tailed moving averages," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 593-624, June.
    16. Makoto Maejima & Ken-iti Sato, 1999. "Semi-Selfsimilar Processes," Journal of Theoretical Probability, Springer, vol. 12(2), pages 347-373, April.
    17. Rosinski, Jan & Zak, Tomasz, 1996. "Simple conditions for mixing of infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 277-288, February.
    18. Mathias Mørck Ljungdahl & Mark Podolskij, 2020. "A minimal contrast estimator for the linear fractional stable motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 381-413, July.
    19. Rybaczuk, M. & Weron, K., 1989. "Linearly coupled quantum oscillators with Lévy stable noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 160(3), pages 519-526.
    20. Krzysztof Burnecki, 1998. "Self-similar models in risk theory," HSC Research Reports HSC/98/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3416-3434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.