IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i2p211-249.html
   My bibliography  Save this article

Asymptotic self‐similarity and wavelet estimation for long‐range dependent fractional autoregressive integrated moving average time series with stable innovations

Author

Listed:
  • Stilian Stoev
  • Murad S. Taqqu

Abstract

. Methods for parameter estimation in the presence of long‐range dependence and heavy tails are scarce. Fractional autoregressive integrated moving average (FARIMA) time series for positive values of the fractional differencing exponent d can be used to model long‐range dependence in the case of heavy‐tailed distributions. In this paper, we focus on the estimation of the Hurst parameter H = d + 1/α for long‐range dependent FARIMA time series with symmetric α‐stable (1

Suggested Citation

  • Stilian Stoev & Murad S. Taqqu, 2005. "Asymptotic self‐similarity and wavelet estimation for long‐range dependent fractional autoregressive integrated moving average time series with stable innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 211-249, March.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:211-249
    DOI: 10.1111/j.1467-9892.2005.00399.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00399.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00399.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    2. Kokoszka, Piotr S. & Taqqu, Murad S., 1996. "Infinite variance stable moving averages with long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 79-99, July.
    3. Cambanis, Stamatis & Hardin, Clyde D. & Weron, Aleksander, 1987. "Ergodic properties of stationary stable processes," Stochastic Processes and their Applications, Elsevier, vol. 24(1), pages 1-18, February.
    4. Jean‐Marc Bardet, 2000. "Testing for the Presence of Self‐Similarity of Gaussian Time Series Having Stationary Increments," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(5), pages 497-515, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    2. Graves, Timothy & Franzke, Christian L.E. & Watkins, Nicholas W. & Gramacy, Robert B. & Tindale, Elizabeth, 2017. "Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 60-71.
    3. P. S. Sephton, 2010. "Unit roots and purchasing power parity: another kick at the can," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3439-3453.
    4. Ayache, Antoine & Hamonier, Julien, 2012. "Linear fractional stable motion: A wavelet estimator of the α parameter," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1569-1575.
    5. Jaesik Jeong & Marina Vannucci & Kyungduk Ko, 2013. "A Wavelet-Based Bayesian Approach to Regression Models with Long Memory Errors and Its Application to fMRI Data," Biometrics, The International Biometric Society, vol. 69(1), pages 184-196, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kruse, Robinson & Sibbertsen, Philipp, 2012. "Long memory and changing persistence," Economics Letters, Elsevier, vol. 114(3), pages 268-272.
    2. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    3. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    4. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    6. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    7. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    8. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    9. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    10. Rehim Kili, 2004. "On the long memory properties of emerging capital markets: evidence from Istanbul stock exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 915-922.
    11. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    12. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    13. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    14. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    15. Wang, Yizao & Stoev, Stilian A. & Roy, Parthanil, 2012. "Decomposability for stable processes," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1093-1109.
    16. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    17. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    18. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    19. Manveer Kaur Mangat & Erhard Reschenhofer, 2020. "Frequency-Domain Evidence for Climate Change," Econometrics, MDPI, vol. 8(3), pages 1-15, July.
    20. Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:211-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.