IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i8p1093-1120.html
   My bibliography  Save this article

A Bayesian-martingale approach to the general disorder problem

Author

Listed:
  • Kavtaradze, T.
  • Lazrieva, N.
  • Mania, M.
  • Muliere, P.

Abstract

We consider a Bayesian-martingale approach to the general change-point detection problem. In our setting the change-point represents a random time of bifurcation of two probability measures given on the space of right-continuous functions. We derive a reflecting backward stochastic differential equation (RBSDE) for the value process related to the disorder problem and show that in classical cases of the Wiener and Poisson disorder problems this RBSDE is equivalent to free-boundary problems for parabolic differential and differential-difference operators respectively.

Suggested Citation

  • Kavtaradze, T. & Lazrieva, N. & Mania, M. & Muliere, P., 2007. "A Bayesian-martingale approach to the general disorder problem," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1093-1120, August.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1093-1120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00192-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.
    2. Erhan Bayraktar & Masahiko Egami, 2008. "An Analysis of Monotone Follower Problems for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 336-350, May.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    4. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    5. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    6. Federico, Salvatore & Ferrari, Giorgio & Schuhmann, Patrick, 2020. "Singular Control of the Drift of a Brownian System," Center for Mathematical Economics Working Papers 637, Center for Mathematical Economics, Bielefeld University.
    7. Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk management for crude oil futures: an optimal stopping-timing approach," Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
    8. de Angelis, Tiziano & Ferrari, Giorgio & Martyr, Randall & Moriarty, John, 2016. "Optimal entry to an irreversible investment plan with non convex costs," Center for Mathematical Economics Working Papers 566, Center for Mathematical Economics, Bielefeld University.
    9. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    10. Liu, Zhenya & Lu, Shanglin & Wang, Shixuan, 2021. "Asymmetry, tail risk and time series momentum," International Review of Financial Analysis, Elsevier, vol. 78(C).
    11. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    12. Vicky Henderson, 2012. "Prospect Theory, Liquidation, and the Disposition Effect," Management Science, INFORMS, vol. 58(2), pages 445-460, February.
    13. Liu, Zhenya & Zhan, Yaosong, 2022. "Investor behavior and filter rule revisiting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 33(C).
    14. Masahiko Egami & Rusudan Kevkhishvili, 2017. "A Direct Solution Method for Pricing Options in Regime-switching Models," Papers 1711.08883, arXiv.org, revised Sep 2018.
    15. S. C. P. Yam & S. P. Yung & W. Zhou, 2014. "Game Call Options Revisited," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 173-206, January.
    16. Tiziano De Angelis & Fabien Gensbittel & St'ephane Villeneuve, 2017. "A Dynkin game on assets with incomplete information on the return," Papers 1705.07352, arXiv.org, revised May 2019.
    17. Jukka Lempa, 2008. "The Optimal Stopping Problem of Dupuis and Wang: A Generalization," Discussion Papers 36, Aboa Centre for Economics.
    18. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "Nash equilibria of threshold type for two-player nonzero-sum games of stopping," Center for Mathematical Economics Working Papers 563, Center for Mathematical Economics, Bielefeld University.
    19. Erhan Bayraktar & Masahiko Egami, 2010. "A unified treatment of dividend payment problems under fixed cost and implementation delays," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 325-351, April.
    20. Xun Li & Xianping Wu & Wenxin Zhou, 2017. "Optimal stopping investment in a logarithmic utility-based portfolio selection problem," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1093-1120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.