A law of the iterated logarithm for stochastic approximation procedures in d-dimensional Euclidean space
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Einmahl, Uwe, 1989. "Extensions of results of Komlós, Major, and Tusnády to the multivariate case," Journal of Multivariate Analysis, Elsevier, vol. 28(1), pages 20-68, January.
- Lacey, Michael T. & Philipp, Walter, 1990. "A note on the almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 201-205, March.
- Pelletier, Mariane, 1998. "On the almost sure asymptotic behaviour of stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 78(2), pages 217-244, November.
- Zhu, Yunmin, 1996. "Asymptotic Normality for a Vector Stochastic Difference Equation with Applications in Stochastic Approximation," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 101-118, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pelletier, Mariane, 1999. "An Almost Sure Central Limit Theorem for Stochastic Approximation Algorithms," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 76-93, October.
- Kifer, Yuri, 2013. "Strong approximations for nonconventional sums and almost sure limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2286-2302.
- Glynn, Peter W. & Wang, Rob J., 2023. "A heavy-traffic perspective on departure process variability," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
- Amir, Gideon & Benjamini, Itai & Gurel-Gurevich, Ori & Kozma, Gady, 2020. "Random walk in changing environment," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7463-7482.
- Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
- Mikhail Gordin & Michel Weber, 2002. "On the Almost Sure Central Limit Theorem for a Class of Z d -Actions," Journal of Theoretical Probability, Springer, vol. 15(2), pages 477-501, April.
- Costa, Manon & Gadat, Sébastien & Bercu, Bernard, 2020. "Stochastic approximation algorithms for superquantiles estimation," TSE Working Papers 20-1142, Toulouse School of Economics (TSE).
- Park, Joon Y. & Shin, Kwanho & Whang, Yoon-Jae, 2010. "A semiparametric cointegrating regression: Investigating the effects of age distributions on consumption and saving," Journal of Econometrics, Elsevier, vol. 157(1), pages 165-178, July.
- S{o}ren Johansen & Morten {O}rregaard Nielsen, 2022. "Weak convergence to derivatives of fractional Brownian motion," Papers 2208.02516, arXiv.org, revised Oct 2022.
- Denker, Manfred & Zheng, Xiaofei, 2018. "On the local times of stationary processes with conditional local limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2448-2462.
- Arup Bose & Rajat Subhra Hazra & Koushik Saha, 2011. "Spectral Norm of Circulant-Type Matrices," Journal of Theoretical Probability, Springer, vol. 24(2), pages 479-516, June.
- Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
- Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
- Li, Jingyu & Zhang, Yong, 2021. "An almost sure central limit theorem for the stochastic heat equation," Statistics & Probability Letters, Elsevier, vol. 177(C).
- Lifshits, M. A. & Stankevich, E. S., 2001. "On the large deviation principle for the almost sure CLT," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 263-267, February.
- Heck, Matthias K., 1998. "The principle of large deviations for the almost everywhere central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 61-75, August.
- Holzmann, Hajo & Koch, Susanne & Min, Aleksey, 2004. "Almost sure limit theorems for U-statistics," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 261-269, September.
- Horvath, Lajos & Khoshnevisan, Davar, 1995. "Weight functions and pathwise local central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 105-123, September.
- István Fazekas & Alexey Chuprunov, 2007. "An Almost Sure Functional Limit Theorem for the Domain of Geometric Partial Attraction of Semistable Laws," Journal of Theoretical Probability, Springer, vol. 20(2), pages 339-353, June.
- Matula, Przemyslaw, 2005. "On almost sure limit theorems for positively dependent random variables," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 59-66, August.
More about this item
Keywords
Stochastic approximation Law of the iterated logarithm Rate of convergence;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:105:y:2003:i:2:p:299-313. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.