IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v361y2024ics0277953624008207.html
   My bibliography  Save this article

Debates over the role of Traditional Chinese Medicine on COVID-19: A computational comparison between professionals and laypersons in Chinese online knowledge community

Author

Listed:
  • Li, Jinhui
  • Shi, Wen

Abstract

Leveraging a large collection of textual data (N = 21,539) from a Chinese online community, we employed structural topic modeling to investigate the thematic disparities between professionals and laypersons, regarding the effectiveness of Traditional Chinese Medicine (TCM) on COVID-19. Findings reveal that laypersons are the dominant communicators in terms of discussion volume, who often focus on relevant news events, societal or political aspects of TCM. In contrast, professionals keep concentrating on issues related to medical expertise, and do not shift attentions as frequent as laypersons. Despite the dominant influence of professionals on laypersons’ agenda, two-way agenda interactions identified confirm that lay public is empowered to negotiate with elite professionals under certain topics. Our results provide novel insights into the dynamic nature of attentions, behaviors, and relations among prominent communication actors, and encourage future research to examine the individual-level and societal-level impacts of these constructs in the emerging online media landscape.

Suggested Citation

  • Li, Jinhui & Shi, Wen, 2024. "Debates over the role of Traditional Chinese Medicine on COVID-19: A computational comparison between professionals and laypersons in Chinese online knowledge community," Social Science & Medicine, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:socmed:v:361:y:2024:i:c:s0277953624008207
    DOI: 10.1016/j.socscimed.2024.117366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953624008207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2024.117366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    2. Neil F. Johnson & Nicolas Velásquez & Nicholas Johnson Restrepo & Rhys Leahy & Nicholas Gabriel & Sara El Oud & Minzhang Zheng & Pedro Manrique & Stefan Wuchty & Yonatan Lupu, 2020. "The online competition between pro- and anti-vaccination views," Nature, Nature, vol. 582(7811), pages 230-233, June.
    3. King, Gary & Pan, Jennifer & Roberts, Margaret E., 2017. "How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, Not Engaged Argument," American Political Science Review, Cambridge University Press, vol. 111(3), pages 484-501, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    2. Bernhardt, Lea & Dewenter, Ralf & Thomas, Tobias, 2023. "Measuring partisan media bias in US newscasts from 2001 to 2012," European Journal of Political Economy, Elsevier, vol. 78(C).
    3. Ntentas, Raphael, 2021. "Quantifying political populism and examining the link with economic insecurity: evidence from Greece," LSE Research Online Documents on Economics 112579, London School of Economics and Political Science, LSE Library.
    4. Lin, Annie E. & Young, Jimmy A. & Guarino, Jeannine E., 2022. "Mother-Daughter sexual abuse: An exploratory study of the experiences of survivors of MDSA using Reddit," Children and Youth Services Review, Elsevier, vol. 138(C).
    5. Li, Fei & Song, Yangbo & Zhao, Mofei, 2023. "Global manipulation by local obfuscation," Journal of Economic Theory, Elsevier, vol. 207(C).
    6. Rybinski, Krzysztof, 2020. "The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation," Finance Research Letters, Elsevier, vol. 34(C).
    7. Rauh, Christian, 2015. "Communicating supranational governance? The salience of EU affairs in the German Bundestag, 1991–2013," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 116-138.
    8. Grajzl, Peter & Murrell, Peter, 2021. "A machine-learning history of English caselaw and legal ideas prior to the Industrial Revolution I: generating and interpreting the estimates," Journal of Institutional Economics, Cambridge University Press, vol. 17(1), pages 1-19, February.
    9. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    10. Julia Seiermann, 2018. "Only Words? How Power in Trade Agreement Texts Affects International Trade Flows," UNCTAD Blue Series Papers 80, United Nations Conference on Trade and Development.
    11. Sami Diaf & Jörg Döpke & Ulrich Fritsche & Ida Rockenbach, 2020. "Sharks and minnows in a shoal of words: Measuring latent ideological positions of German economic research institutes based on text mining techniques," Macroeconomics and Finance Series 202001, University of Hamburg, Department of Socioeconomics.
    12. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    13. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    14. Weiss, Max & Zoorob, Michael, 2021. "Political frames of public health crises: Discussing the opioid epidemic in the US Congress," Social Science & Medicine, Elsevier, vol. 281(C).
    15. Maschke, Andreas, 2024. "Talking exports: The representation of Germany's current account in newspaper media," MPIfG Discussion Paper 24/1, Max Planck Institute for the Study of Societies.
    16. Arthur Dyevre & Nicolas Lampach, 2021. "Issue attention on international courts: Evidence from the European Court of Justice," The Review of International Organizations, Springer, vol. 16(4), pages 793-815, October.
    17. Dewenter, Ralf & Dulleck, Uwe & Thomas, Tobias, 2018. "The political coverage index and its application to government capture," Research Papers 6, EcoAustria – Institute for Economic Research.
    18. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).
    19. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    20. Parijat Chakrabarti & Margaret Frye, 2017. "A mixed-methods framework for analyzing text data: Integrating computational techniques with qualitative methods in demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(42), pages 1351-1382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:361:y:2024:i:c:s0277953624008207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.