IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v287y2021ics0277953621007279.html
   My bibliography  Save this article

Community vulnerability and mobility: What matters most in spatio-temporal modeling of the COVID-19 pandemic?

Author

Listed:
  • Carroll, Rachel
  • Prentice, Christopher R.

Abstract

Community vulnerability is widely viewed as an important aspect to consider when modeling disease. Although COVID-19 does disproportionately impact vulnerable populations, human behavior as measured by community mobility is equally influential in understanding disease spread. In this research, we seek to understand which of four composite measures perform best in explaining disease spread and mortality, and we explore the extent to which mobility account for variance in the outcomes of interest. We compare two community mobility measures, three composite measures of community vulnerability, and one composite measure that combines vulnerability and human behavior to assess their relative feasibility in modeling the US COVID-19 pandemic. Extensions – via temporally dependent fixed effect coefficients – of the commonly used Bayesian spatio-temporal Poisson disease mapping models are implemented and compared in terms of goodness of fit as well as estimate precision and viability. A comparison of goodness of fit measures nearly unanimously suggests the human behavior-based models are superior. The duration at residence mobility measure indicates two unique and seemingly inverse relationships between mobility and the COVID-19 pandemic: the findings indicate decreased COVID-19 presence with decreased mobility early in the pandemic and increased COVID-19 presence with decreased mobility later in the pandemic. The early indication is likely influenced by a large presence of state-issued stay at home orders and self-quarantine, while the later indication likely emerges as a consequence of holiday gatherings in a country under limited restrictions. This study implements innovative statistical methods and furnishes results that challenge the generally accepted notion that vulnerability and deprivation are key to understanding disparities in health outcomes. We show that human behavior is equally, if not more important to understanding disease spread. We encourage researchers to build upon the work we start here and continue to explore how other behaviors influence the spread of COVID-19.

Suggested Citation

  • Carroll, Rachel & Prentice, Christopher R., 2021. "Community vulnerability and mobility: What matters most in spatio-temporal modeling of the COVID-19 pandemic?," Social Science & Medicine, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:socmed:v:287:y:2021:i:c:s0277953621007279
    DOI: 10.1016/j.socscimed.2021.114395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953621007279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2021.114395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, G.K., 2003. "Area Deprivation and Widening Inequalities in US Mortality, 1969-1998," American Journal of Public Health, American Public Health Association, vol. 93(7), pages 1137-1143.
    2. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    3. Pierre Nouvellet & Sangeeta Bhatia & Anne Cori & Kylie E. C. Ainslie & Marc Baguelin & Samir Bhatt & Adhiratha Boonyasiri & Nicholas F. Brazeau & Lorenzo Cattarino & Laura V. Cooper & Helen Coupland &, 2021. "Reduction in mobility and COVID-19 transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Liu & Tiantian Gu & Lingzhi Li & Peng Cui & Yan Liu, 2023. "Measuring the Urban Resilience Abased on Geographically Weighted Regression (GWR) Model in the Post-Pandemic Era: A Case Study of Jiangsu Province, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    2. MASUHARA Hiroaki & HOSOYA Kei, 2022. "What Impacts Do Human Mobility and Vaccination Have on Trends in COVID-19 Infections? Evidence from four developed countries," Discussion papers 22087, Research Institute of Economy, Trade and Industry (RIETI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    2. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    3. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    4. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    5. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    6. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    7. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    8. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    9. Muff, Stefanie & Ott, Manuela & Braun, Julia & Held, Leonhard, 2017. "Bayesian two-component measurement error modelling for survival analysis using INLA—A case study on cardiovascular disease mortality in Switzerland," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 177-193.
    10. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    11. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    12. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    13. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    14. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    15. Tyler A. Scott & Nicola Ulibarri & Ryan P. Scott, 2020. "Stakeholder involvement in collaborative regulatory processes: Using automated coding to track attendance and actions," Regulation & Governance, John Wiley & Sons, vol. 14(2), pages 219-237, April.
    16. Matthew Yap & Matthew Tuson & Berwin Turlach & Bryan Boruff & David Whyatt, 2021. "Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units," IJERPH, MDPI, vol. 18(3), pages 1-15, February.
    17. Humphreys, John M. & Srygley, Robert B. & Lawton, Douglas & Hudson, Amy R. & Branson, David H., 2022. "Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations," Ecological Modelling, Elsevier, vol. 471(C).
    18. Christian P. Robert, 2013. "Bayesian Computational Tools," Working Papers 2013-45, Center for Research in Economics and Statistics.
    19. Rachel Lowe & Joan Ballester & James Creswick & Jean-Marie Robine & François R. Herrmann & Xavier Rodó, 2015. "Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe," IJERPH, MDPI, vol. 12(2), pages 1-16, January.
    20. Yuheng Ling, 2020. "Time, space and hedonic prediction accuracy: evidence from Corsican apartment markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 367-388, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:287:y:2021:i:c:s0277953621007279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.