Spatiotemporal trends and influence factors of global diabetes prevalence in recent years
Author
Abstract
Suggested Citation
DOI: 10.1016/j.socscimed.2020.113062
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- E. G. Knox, 1964. "The Detection of Space‐Time Interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 13(1), pages 25-29, March.
- Vanesa Bellou & Lazaros Belbasis & Ioanna Tzoulaki & Evangelos Evangelou, 2018. "Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
- Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
- Goryakin, Yevgeniy & Rocco, Lorenzo & Suhrcke, Marc, 2017. "The contribution of urbanization to non-communicable diseases: Evidence from 173 countries from 1980 to 2008," Economics & Human Biology, Elsevier, vol. 26(C), pages 151-163.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Shaobin & Ren, Zhoupeng & Liu, Xianglong & Yin, Qian, 2022. "Spatiotemporal trends in life expectancy and impacts of economic growth and air pollution in 134 countries: A Bayesian modeling study," Social Science & Medicine, Elsevier, vol. 293(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
- Tadadjeu, Sosson & Njangang, Henri & Asongu, Simplice A. & Kamguia, Brice, 2023.
"Natural resources, child mortality and governance quality in African countries,"
Resources Policy, Elsevier, vol. 83(C).
- Sosson Tadadjeu & Henri Njangang & Simplice A. Asongu & Brice Kamguia, 2021. "Natural resources, child mortality and governance quality in African countries," Working Papers of the African Governance and Development Institute. 21/027, African Governance and Development Institute..
- Sosson Tadadjeu & Henri Njangang & Simplice A. Asongu & Brice Kamguia, 2021. "Natural resources, child mortality and governance quality in African countries," Working Papers 21/027, European Xtramile Centre of African Studies (EXCAS).
- Tadadjeu, Sosson & Njangang, Henri & Asongu, Simplice & Kamguia, Brice, 2021. "Natural resources, child mortality and governance quality in African countries," MPRA Paper 110597, University Library of Munich, Germany.
- Sosson Tadadjeu & Henri Njangang & Simplice A. Asongu & Brice Kamguia, 2021. "Natural resources, child mortality and governance quality in African countries," Research Africa Network Working Papers 21/027, Research Africa Network (RAN).
- Eibich, Peter & Ziebarth, Nicolas, 2014.
"Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
- Eibich, Peter & Ziebarth, Nicolas R., 2014. "Examining the structure of spatial health effects in Germany using Hierarchical Bayes Models," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 305-320.
- Eibich, Peter & Ziebarth, Nicolas, 2013. "Examining the Structure of Spatial Health Effects using Hierarchical Bayes Models," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79844, Verein für Socialpolitik / German Economic Association.
- Peter Eibich & Nicolas R. Ziebarth, 2013. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," SOEPpapers on Multidisciplinary Panel Data Research 620, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
- Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
- Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
- Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
- Louise Choo & Stephen G. Walker, 2008. "A new approach to investigating spatial variations of disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 395-405, April.
- Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
- Seunghan Kim & Byungyoon Yun & Seunghyun Lee & Changyoung Kim & Juho Sim & Ara Cho & Yeonsuh Oh & Jiho Lee & Jinha Yoon, 2021. "Occupational Noise Exposure and Incidence of High Fasting Blood Glucose: A 3-Year, Multicenter, Retrospective Study," IJERPH, MDPI, vol. 18(17), pages 1-12, September.
- Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
- Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
- Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
- Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
- Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
- Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
- Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
- Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
- Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
More about this item
Keywords
Global diabetes prevalence; Bayesian space-time model; Bayesian LASSO regression; Spatiotemporal trends; Influence factors;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:256:y:2020:i:c:s0277953620302811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.